
On Black-Box Reductions between Predicate Encryption Schemes

Vipul Goyal∗ Virendra Kumar† Satya Lokam‡ Mohammad Mahmoody§

February 20, 2012

Abstract

We prove that there is no black-box construction of a threshold predicate encryption system
from identity-based encryption. Our result signifies nontrivial progress in a line of research
suggested by Boneh, Sahai and Waters (TCC ’11), where they proposed a study of the relative
power of predicate encryption for different functionalities. We rely on and extend the techniques
of Boneh et al. (FOCS ’08), where they give a black-box separation of identity-based encryption
from trapdoor permutations.

In contrast to previous results where only trapdoor permutations were used, our starting
point is a more powerful primitive, namely identity-based encryption, which allows planting
exponentially many trapdoors in the public-key by only planting a single master public-key
of an identity-based encryption system. This makes the combinatorial aspect of our black-
box separation result much more challenging. Our work gives the first impossibility result on
black-box constructions of any cryptographic primitive from identity-based encryption.

We also study the more general question of constructing predicate encryption for a complexity
class F, given predicate encryption for a (potentially less powerful) complexity class G. Toward
that end, we rule out certain natural black-box constructions of predicate encryption for NC1

from predicate encryption for AC0 assuming a widely believed conjecture in communication
complexity.

Keywords: Predicate Encryption, Black-Box Reductions, Identity-based Encryption, Communi-
cation Complexity.

∗Microsoft Research, India, vipul@microsoft.com.
†Georgia Tech, virendra@cc.gatech.edu. Work done in part while visiting Microsoft Research, India.
‡Microsoft Research, India, satya@microsoft.com.
§Cornell, mohammad@cs.cornell.edu.

1

1 Introduction

An encryption scheme enables a user to securely share data with other users. Traditional methods
based on Secret-Key Cryptography and Public-Key Cryptography consider the scenarios where a
user securely shares data with another fixed user whose identity (characterized by the possession
of the decryption-key) it knows in advance. In particular, in these schemes, there is a bijection
between the encryption-key and the decryption-key, fixed by the chosen encryption scheme.

As systems and networks grow in complexity, and in particular with the emergence of the cloud
computing, the above viewpoint may be too narrow to cover many important applications. Often, a
user might want to encrypt data to be shared with a large set of other users based on some common
“property”, or attribute, they satisfy. Membership in this set may not be known to the encryptor,
or may not even be decidable in advance. Furthermore, a user might want to share data selectively
so different users are able to decrypt different parts of that data. To cater to these scenarios, the
notion of Predicate Encryption (or Attribute-based Encryption) has recently emerged. Predicate
encryption was introduced by Sahai and Waters [34], and further developed in the work of Goyal
et al. [19]. It has been the subject of several recent works, e.g., [1, 12, 13, 21, 26, 30, 31]. Predicate
encryption is useful in a wide variety of applications; in particular, for fine-grained access control. It
has also been a useful technical tool in solving seemingly unrelated problems, e.g., key escrow [18]
and user revocation [7] in Identity-based Encryption (IBE). IBE [10,14,35] can be seen as the most
basic form of a predicate encryption, where the predicate corresponds to a point function.

A predicate encryption scheme is defined in terms of a family F of Boolean functions (predicates)
on a universe A of attributes. Decryption-keys are associated to a predicate f ∈ F and ciphertexts
are labeled with (or are created based on) an attribute string a ∈ A. A user with a decryption-key
corresponding to f can decrypt a ciphertext labeled with x if and only if f(x) = 1. As argued by
Boneh et al. [12], the key challenge in the study of predicate encryption (or Functional Encryption
in general) is understanding what classes of functionalities F can be supported. If we could support
any polynomial time computable predicate f , then any polynomial-time access control program
that acts over a user’s credentials could be supported [12].

Unfortunately, the current state of the art is far from being able to support an arbitrary
polynomial-time f . Given this, an important direction Boneh et al. [12] suggested was to un-
derstand the relative strengths of predicate encryption schemes with respect to the functionalities
they can support: When does a scheme for one functionality imply a scheme for another? In
the absence of such a reduction, can we prove that predicate encryption for one functionality is
inherently harder than for another? A meaningful approach to address this latter question is via
black-box separations [20], see [29, 33] for a comprehensive survey on the topic. A proof that a
cryptographic primitive P1 cannot be constructed given black-box access to another primitive P2

(and of course without incurring any additional assumptions) can be viewed as an indication that
P1 is in some sense a stronger primitive than P2. Hence, to construct P1 one may have to look for
more powerful techniques, or stronger assumptions than for P2 (or try non-black-box reductions).
Thus, studying these questions would help us better understand the extent to which techniques for
current predicate encryption systems might or might not be useful in obtaining systems for more
general functionalities. The broad goal of this work is to make progress toward answering these
questions.

Since a predicate encryption scheme has an associated family F of Boolean functions, a natural
way to classify them is according to the complexity class this family comes from. For example, we
can call a scheme (A,F) an AC0-PE scheme, if every member of F can be computed by a constant-

1

depth polynomial size circuit (an AC0 circuit) on an attribute string from A. Hence, a concrete
approach to compare predicate encryption schemes is to ask questions of the kind: Given a predicate
encryption scheme for predicates in complexity class G, can we construct a scheme for predicates
in a (potentially larger) complexity class F in a black-box way? For example, it is well-known that
the circuit class NC1 is strictly larger than AC0. Thus a concrete question is: Is NC1-predicate
encryption provably harder than AC0-predicate encryption with respect to black-box reductions?
A second aspect of our work is to try to relate (perhaps conjectured) separations among Boolean
function complexity classes to black-box separations among the corresponding predicate encryption
schemes.

1.1 Our Results

Our main result is a black-box separation of threshold predicate encryption (TPE) from identity-
based encryption (IBE) schemes. To our knowledge, this is the first result on the impossibility
of constructing a cryptographic primitive from IBE. Recall that IBE can be viewed as the most
basic form of predicate encryption in which the decryption tests exact equality (in other words,
the predicate is a point function). Hence, the first natural step in the study of the above question
is whether IBE can be used to construct more general predicate encryption systems. Our results
show that IBE cannot be used to construct even a basic system for threshold predicates (introduced
by Sahai and Waters [34]). We believe that the question of IBE vs. more advanced predicate
encryption systems is of special interest. IBE as a primitive is very well studied [8–10, 14, 17, 36],
and constructions of IBE are now known based on a variety of hardness assumptions.

Returning to our more general question, we rule out certain “natural” black-box constructions
of predicate encryption for the class NC1 from predicate encryption for the class AC0, assuming
a widely believed conjecture in the area of two-party communication complexity. Given black-
box access to a predicate encryption scheme for (B,G), a natural way to construct a predicate
encryption scheme for a “larger” system (A,F) using a a Sharing-Based Construction is as follows.
The decryption-key for an f ∈ F is simply the set of decryption keys for a set S(f) = {g1, . . . , gq}
of predicates gi ∈ G from the smaller system. Similarly, for each attribute a ∈ A, we associate a
set S(a) = {α1, . . . , αq} of attributes from B. To encrypt a message m under attribute a for the
big system, we generate q shares m1, . . . ,mq of m and encrypt mj under attribute αj of the small
system. The concatenation of these encrypted shares is the ciphertext of m under a. To decrypt,
we try to decrypt each mj using the decryption keys of each gi ∈ S(f). The sharing construction
ensures that the shares mj that are successfully decrypted, if any, in this process suffice to recover
m. Thus the sharing-based construction is a rather natural and obvious way to build predicate
encryption schemes for more complex functionalities from simpler ones. Our result shows that such
a sharing-based construction is impossible if F is a family of functions in NC1 and G is any family
of functions from AC0, assuming certain conjectures in communication complexity. It is worth
noting that combinatorial arguments about sharing-based constructions form a core component of
our main result on (unrestricted) black-box separation of TPE from IBE.

1.2 Techniques

We build upon and extend the techniques of Boneh et al. [11] which rule out black-box construction
of IBE from Trapdoor Permutations (TDP). Along the way, we also simplify several aspects of
their proof. Given a black-box construction of TPE from IBE, our proof proceeds by designing an

2

attack on TPE which succeeds with high probability (in fact arbitrarily close to the completeness
probability of the purported TPE scheme). Somewhat more formally, we build an oracle O relative
to which a CCA secure IBE exists, but any purported construction of a TPE relative to this oracle
is insecure.

Our analysis of the attack roughly consists of a combinatorial part and a cryptographic part.
The combinatorial aspect of our analysis is new and completely different from that in [11]. While the
cryptographic part is similar in structure to that of [11], we do make several crucial modifications
that makes our attack simpler and analysis cleaner.

A Comparison of the Combinatorial Aspects. At the heart of the proof of [11] is a combi-
natorial argument as follows. An IBE system obtained by a black-box construction from a TDP
must embed in its public parameter the public keys of some permutations of the TDP oracle. The
adversary’s main goal is to collect all the trapdoors corresponding to these permutations. Such
trapdoors are embedded in the decryption keys corresponding to identities in the IBE system. The
main point is that there are only q = poly(κ) many permutations planted in the public parameters
of the IBE, but they must also encode an exponential number of identities. Therefore, if we look at
a sufficiently large set of random identities and their secret keys, and encrypt and decrypt a random
message under these identities, during at most q of these decryptions we might encounter a “new”
trapdoor (which is planted in the public-key to be used during encryption, but was not discovered
during other decryptions). It follows, if we choose our identity set S to be of size k · q (and encrypt

and decrypt random messages under them), and then choose an identity id
$← S at random from

those q ·k identities, then with probability at least 1− 1/k there is no new (undiscovered) trapdoor
left for this identity id. Therefore, whatever is learned during the decryptions of the encryptions of
random messages under the identities S \ {id}, is sufficient to decrypt a message encrypted under
id without knowing its decryption-key.

This combinatorial argument immediately suggest the following attack. Get decryption-keys
for all but a random identity id∗ chosen from a large enough random set S = id1, . . . , idk·q of
identities. Collect the trapdoors learned from the encryptions of random messages under the
identities in S \ id∗, and their decryptions using the corresponding decryption-keys. Try to decrypt
the challenge ciphertext C encrypted under the identity id∗.

In our case, we have a related but more difficult question: what if we start with a more powerful
primitive like an IBE and want to construct another “target” predicate encryption scheme? Now
the intuition behind the combinatorial argument of [11] completely breaks down. The reason is that
in our new setting, by planting only one (master) public-key of the IBE scheme in the public-key of
the target predicate encryption, the encryption algorithm potentially has access to an exponential
number of permutations (each indexed by an identity) whose trapdoors can be planted in the
decryption-keys. In fact, each decryption-key of the predicate encryption system might have a
unique trapdoor (corresponding to a unique identity derived from the description of the predicate).
Hence, one can’t hope to learn all trapdoors and use them to decrypt the challenge ciphertext. Thus,
roughly speaking, by moving from a trapdoor permutation oracle to various forms of PE oracles
such as IBE (as the primitive used in the construction), we are allowing the “universe” of trapdoor
permutations planted in the public-key and decryption-keys to be exponentially large (rather than
some fixed polynomial). The latter difference is the main reason behind the complications in the
combinatorial aspect of our problem, because suddenly the regime of positive results becomes much
richer, making the job of proving an impossibility result much more challenging.

3

Our proof relies on the collusion-resistance property of the predicate encryption. The “hope”
that an attack exists comes from the following observations:

• The decryption key for each predicate may still consist of only a polynomial number of IBE
decryption-keys.

• Each ciphertext is encrypted using a polynomially large set of identities such that a decryption-
key for at least one of these identities is required to decrypt the ciphertext. On the other
hand, each ciphertext can be decrypted by keys for an exponential number of different predi-
cates (this follows from the property of a threshold encryption scheme). Call such predicates
“related”.

• This exponentially large set of related predicates must share an IBE decryption-key since
they can decrypt a common ciphertext.

• Our attack works by requesting sufficient number of decryption-keys for related predicates
(which would still be unable to decrypt challenge ciphertext). Since related predicates share
IBE decryption-keys, the adversary is able to collect all “useful” IBE decryption-keys.

It is not surprising that the above combinatorial arguments sound as though they could already
be used to attack sharing based constructions. Indeed, our core combinatorial lemma (Lemma 3.5)
is used to refute any sharing-based construction of a TPE from an IBE (Corollary 3.10).

A Comparison of the Cryptographic Aspects. As in [11], turning the combinatorial analysis
into a full-fledged impossibility result requires non-trivial black-box separation machinery. For this
reason, even though the combinatorial argument of [11] is relatively simple, the full proof is quite
complicated. The explanation for the complexity of such proofs is that one has to handle all
possible constructions using a trapdoor permutation oracle (and not just where, for example, a
decryption-key simply consists of decryption keys for various identities).

Although the overall structure of our proof is similar to that of [11], there are several differences
in the detailed arguments. In fact, we make some crucial modifications which lead to a more direct
attack and cleaner analysis.

The first major modification is that our attacker “directly” learns the heavy queries (following
the paradigm of [3,4]). In [11], the attack proceeds by having steps (such as several encryptions of a
random bit under the challenge identity, repeating a few steps several times) whose indirect purpose
is to learn the heavy queries. Secondly, since we start with an oracle which roughly provides four
functionalities (as opposed to the three functionalities of a trapdoor permutation oracle), we need
to modify and adapt the techniques of [11] to to new setting Apart from these, there are significant
differences in the manner we compare the various experiments which we believe makes the analysis
cleaner and more general. The details regarding these can be found in Section 4.1 and beyond.

2 Preliminaries

Notation. For any probabilistic algorithm A, by y ← A(x) we denote the process of executing A
over the input x while using fresh randomness (which we do not represent explicitly) and getting
the output y. By a partial oracle we refer to an oracle which is defined only for some of the queries

4

it might be asked. By [x 7→ y] ∈ P we mean that P(x) = y is defined. For a query x and a
partial oracle P, we misuse the notation and denote x ∈ P whenever an answer for x is defined
in P. By Supp(X) we refer to the support set of the random variable X. For every two random
variables X,Y , by ∆(X,Y) we denote the statistical distance between them. For correlated random
variables X and Y , by (X | Y0) we denote the distribution of X conditioned on Y = Y0 for some
Y0 ∈ Supp(Y). For a random variable S whose values are sets, we call an element ε-heavy, if
Pr[x ∈ S] ≥ ε. The view of any probabilistic oracle algorithm A, denoted as View(A) refers to its
input, private randomness, and oracle answers (which all together determined the whole execution
of A).

2.1 Basic Probabilistic Facts

Definition 2.1. For a random variable X = (X1, . . . , Xk) consisting of k correlated random vari-
ables. For any ` ∈ [k] we call y = (y1, . . . , y`) a prefix sample of length ` for X if yi ∈ Supp(Xi) for
all i ∈ [`]. We call an event B defined over Supp(X) a prefix event, if there is a set of prefix samples
SB for X such that x = (x1, . . . , xk) ∈ B if an only if there exists some y = (y1, . . . , y`) ∈ SB which
is a prefix of x. For any partial sequence xi = (x1, . . . , xi), i ≤ k we say that the prefix event B
happens over xi, and denote it as the Boolean indicator B(xi), if and only if (x1, . . . , x`) ∈ SB for
some ` ≤ i.

The following intuitive lemma can be verified by inspection and is implicit in many works, and
here we state it formally. Roughly speaking, this lemma says: if there are two statistical games
that proceed almost the same till some “bad” events happen in either of them, then their statistical
distance can be bound by the probability of these bad events.

Lemma 2.2. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two random variables each consisting
of k correlated random variables. Let BX and BY be two prefix events defined, in order, for X and
Y . For every i ∈ [k], suppose the statistical distance between (Xi+1 | (X1, . . . , Xi) = (x1, . . . , xi))
and (Yi+1 | (Y1, . . . , Yi) = (y1, . . . , yi)) is at most εi for every xi = (x1, . . . , xi) and yi = (y1, . . . , yi)
such that: BX does not happen over xi and BY does not happen over yi. Then it holds that
∆(X,Y) ≤

∑
i∈[k] εi + PrX [BX] + PrY [BY].

2.2 Predicate Encryption and Its Variants

Definition 2.3 (Predicate Encryption). A predicate encryption scheme PE for the predicate set Fκ
and attribute set Aκ with completeness ρ consists of four probabilistic polynomial time algorithms
PE = (G,K,E,D) such that for every predicate f ∈ F, every attribute a ∈ A such that f(a) = 1,
and every message M , if we do the following steps, then with probability at least ρ it holds that
M ′ = M :

1. Generate a public-key and a master secret-key: (PK,SK)← G(1κ).

2. Get a decryption-key DKf ← K(SK, f) for the predicate f ∈ F.

3. Encrypt the message M under the attribute a ∈ A and get C ← E(PK, a,M).

4. Decrypt C using the decryption-key DKf and get M ′ ← D(PK,DKf , C).

5

Definition 2.4 (Neighbor Sets of Predicates and Attributes). For every set of predicates F and
f ∈ F, and for every set of attributes A and a ∈ A we define the following terminology:

• N(f) = {a | a ∈ A, f(a) = 1} and similarly N(a) = {f | f ∈ F, f(a) = 1}.

• deg(f) = |N(f)| and deg(a) = |N(a)|.

Since we always work with families of algorithms and sets indexed by a security parameter κ,
when it is clear from the context we might omit the index κ.

Definition 2.5 (Security of Predicate Encryption). Let PE = (G,K,E,D) be a predicate en-
cryption scheme with the predicate set F and the attribute set A. PE is said to be CPA secure
if for any probabilistic polynomial time adversary Adv participating in the experiment below, the
probability of Adv correctly outputting the bit b is at most 1/2 + neg(κ):

1. Setup: Generate the keys (PK, SK)← G(1κ) and give PK to Adv.

2. Query Keys: Adv adaptively queries some predicates fi ∈ F for i = 1, 2, . . . and is given
the corresponding decryption-keys DKi ← K(SK, fi).

3. Challenge: Adv submits an attribute a ∈ A and a pair of messages M0 6= M1 of the same
length |M0| = |M1| conditioned on

fi(a) = 0 for every predicate fi whose key DKi is acquired by Adv (1)

and is given C ← E(PK, a,Mb) for a randomly selected b
$←{0, 1}.

4. Adv continues to query keys for predicates subject to condition (1) and finally outputs a bit.

PE is said to be CCA secure if for any probabilistic polynomial time adversary Adv participating
in a modified experiment (explained next), the probability of Adv correctly outputting the bit b
is at most 1/2 + neg(κ). The modified experiment proceeds identically as the above experiment,
except that after Step 3, Adv is also allowed to adaptively query ciphertexts Ci for i = 1, 2, . . .
encrypted under the attribute a, with the condition that Ci 6= C for any i, and he is given the
decrypted message M ← D(DKf , Ci), where DKf ← K(SK, f) is a decryption-key for a predicate
f such that f(a) = 1.

Comparison with [12]. The work of Boneh et al. [12] calls an attribute an index, calls the
message M a payload message, and our predicate f ∈ F here is analogous to their P (k, ·) for
a key from the “key space” (which is the same as our predicate set F). Also [12] considers an
empty decryption-key ε that reveals certain information about (a,M) from E(PK, a,M) such as
the length of M (or maybe the attribute a—in which case the scheme is called public-index).
Definition 2.5 can be deduced from the definition of [12] as a special form of functional encryption
when the message length and the attribute is consciously revealed from the encryption, and thus
the scheme is public index. Here we do not assume that our schemes are necessarily public index,
but we will work with this weaker notion of security. This makes our negative results of Section 4
only stronger, because a stronger security definition tailored for index hiding schemes gives more
power to the adversary as follows: Adv is allowed to submit (a0,M0), (a1,M1) (with potentially
different attributes a0 6= a1) such that for every key DKf acquired by him, either it holds that
f(a0) = f(a1) = 0 and |M0| = |M1|, or that f(a0) = f(a1) = 1 and M0 = M1.

6

Definition 2.6 (Identity-based Encryption [35]). An Identity Based Encryption scheme is a pred-
icate encryption scheme where (1) the predicate and attribute sets are equal A = F = {0, 1}κ
(and are called the set of identities), and (2) for every predicate f ∈ {0, 1}κ and every attribute
a ∈ {0, 1}κ we have that f(a) = 1 if and only if f = a.

Definition 2.7 (Threshold Predicate Encryption [34]). A Threshold Predicate Encryption with
threshold 0 < τ < 1 (or simply a τ -TPE) is a predicate encryption where both the predicate
and the attribute sets are equal to {0, 1}κ and for any predicate f ∈ {0, 1}κ and any attribute
a ∈ {0, 1}κ we have that f(a) = 1 if and only if 〈f, a〉 ≥ τ · κ where 〈f, a〉 is the inner product of
the Boolean vectors f = (f1, . . . , fκ), a = (a1, . . . , aκ) defined as 〈f, a〉 =

∑
i∈[κ] ai · fi.

The notion of threshold predicate encryption was defined by [34] and is also known as the fuzzy
IBE.

3 Sharing-based Constructions and Impossibility Results

In this section, we describe two intuitive and simple approaches to build a predicated encryption
scheme using another predicate encryption scheme as a black-box. It is interesting that the simpler
of the two, the OR-based approach turns out to be as powerful as the seemingly more general
Sharing-based approach. Even though ruling out constructions using these approaches is a weaker
impossibility result than an unrestricted black-box separation (as we will do in Section 4), it seems
instructive to refute these natural and general approaches to black-box reductions among predicate
encryption schemes. In fact, our proof refuting OR-based constructions of TPE in Section 3.3
forms the combinatorial core of our subsequent proof of a general black-box separation in Section 4.
Moreover, the basic approach to building the attack needed in our proof (as well as that in [11]) of
the general black-box separation results seems to benefit by keeping the sharing-based constructions
in mind. In Section 3.4, we investigate a new approach to refute sharing-based constructions using
(proved or conjectured) separation results in two-party communication complexity. In particular, we
can use conjectures in communication complexity to give evidence that NC1-predicate encryption
is strictly harder than AC0-predicate encryption.

3.1 The OR-Based Approach

Definition 3.1. Let (F,A) and (G,B) be two pairs of predicate and attribute sets. We call S(·) a
q-set system for (F,A) using (G,B) if S is a mapping defined over F ∪ A such that:

1. For every f ∈ F it holds that S(f) ⊂ G, and for every a ∈ A it holds that S(a) ⊂ B.

2. For every x ∈ F ∪ A it holds that |S(x)| ≤ q.

Definition 3.2. We say there is an OR-based construction with set-size q for the pair of predicate
and attribute sets (F = {f1, . . .},A = {a1, . . .}) using another pair (G = {ϕ1, . . .},B = {α1, . . .}) if
there exists a q-set system S(·) for (F,A) using (G,B) such that the following holds:

• For every f ∈ F and a ∈ A, if S(f) = {ϕ1, . . . , ϕdf } and S(a) = {α1, . . . , αda}, then f(a) =∨
i∈[df],j∈[da] ϕi(αj).

We call the OR-based construction efficient if the mapping S(·) is efficiently computable.

7

Lemma 3.3. Suppose there exists an efficient OR-based construction for (F,A) using (G,B).
Then a secure predicate encryption scheme PE1 = (G1,K1,E1,D1) for (F,A) with completeness
ρ can be constructed (in a black-box way) from any secure predicate encryption scheme PE2 =
(G2,K2,E2,D2) for (G,B) with completeness ρ.

Proof. First we describe how the components of PE1 work and then will prove its security.

• G1(1κ): The public-key and master secret-key are sampled as (PK,SK) ← G2(1κ2) (for the
right value of the security parameter κ2, chosen based on the main security parameter κ).

• K1(SK, f): To get a decryption-key DKf for any predicate f ∈ F, first compute S(f) =
{ϕ1, . . . , ϕdf } ⊆ G, then get the keys DKi ← K2(SK, ϕi) for every i ∈ [df], and finally take
DKf = (f,DK1, . . . ,DKdf).

• E1(PK, a,m): To get the encryption c← E1(PK, a,M) for any attribute a ∈ A and message
M , first compute S(a) = {α1, . . . , αda} ⊆ B, then encrypt M independently under αi for
every i ∈ [da] to get Ci ← E2(PK, αi,M), and finally take C = (a,C1, . . . , Cda).

• D1(PK,DKf , C): To decrypt the ciphertext C = (a,C1, . . . , Cda) under the key DKf =
(f,DK1, . . . ,DKdf), first get the sets S(a) = {α1, . . . , αda}, S(f) = {ϕ1, . . . , ϕdf }, and look
for the lexicographically first pair (i, j) such that ϕi(αj) = 1 and output D2(PK,DKi, Cj).

The ρ-completeness of PE1 is simply inherited from PE2. In what follows we will prove the
security of PE1. Given an adversary Adv1 attacking PE1 and succeeding with probability 1/2+µ
(we call µ the advantage of the adversary), we construct another adversary Adv2 attacking PE2

with advantage at least µ/q where q = poly(κ) is the set-size of the set-system S(·). Moreover,
if Adv1 runs in polynomial time, then so does Adv2 who makes at most q times the number of
queries made by Adv1. First we consider a security game in which an adversary Adv′ can submit
up to 2k ≤ 2q (rather than two) pairs:

(α1,M
1
0), (α1,M

1
1), . . . , (αk,M

k
0), (αk,M

k
1)

such that every (αi,M
i
0), (αi,M

i
1) satisfy the condition (1). In return Adv′ will get either the

encryptions of (αi,M
i
0) for all i ∈ [k] or the encryptions of (αi,M

i
1) for all i, and is supposed

to guess which encryptions he gets. We call the latter an extended security game. It can be seen
through a standard hybrid argument (cf., Theorem 11.3.1, Chapter 11 of [5]) that if Adv′ can have
advantage µ′ in this game, then another adversary Adv can get advantage at least µ′/q according
to Definition 2.5.

Now, we will construct an adversary Adv′2 attacking PE2 in the extended security game with
advantage µ. By the discussion above it can be turned into a standard adversary Adv2 of advantage
µ/q according to Definition 2.5. Adv′2 acts as follows.

• Setup: Adv′2 gets PK and initiates the simulation of Adv1 by giving PK to it.

• Query: For any query f ∈ F that Adv1 makes, Adv′2 first computes S(f) = {ϕ1, . . . , ϕdf },
then queries all of ϕ1, . . . , ϕdf and gets back keys DK1, . . . ,DKdf , and finally returns DKf =
(f,DK1, . . . ,DKdf) to Adv1.

8

• Challenge: When Adv1 submits two pairs (a,M0), (a,M1) (satisfying the condition f(a) = 0
for every query f made by Adv1), then Adv′2 computes S(a) = {α1, . . . , αda}. Then for all
i ∈ [da] it submits (αi,M0), (αi,M1), gets Ci, and returns C = (a,C1, . . . , Cda) to Adv1.

• If Adv1 makes more queries, then Adv′2 continues answering them as before and finally,
Adv′2 outputs whatever bit Adv1 outputs.

Note that the condition (1) in the challenge phase is satisfied for Adv′2 if it is satisfied for
Adv1. From Definition 3.2, if for any f ∈ F and a ∈ A f(a) = 0, then for all i ∈ [df] and
j ∈ [da] ϕi(αj) = 0, where S(f) = {ϕ1, . . . , ϕdf } and S(a) = {α1, . . . , αda}. Thus, if f(a) = 0 for
every query f made by Adv1, then so is true for Adv′2, i.e., ϕ(α1) = · · · = ϕ(αda) = 0 for every
query ϕ made by Adv′2. Now, it is easy to see that Adv′2 is correctly simulating the experiment
for Adv1 and therefore achieves the same advantage µ.

3.2 The Sharing-Based Approach

Clearly, the OR-based construction of Lemma 3 is not the only way that one can imagine to construct
a F-PE from a G-PE. In fact, as noted also by [22] in the context of using trapdoor permutations,
there is a possibility of employing a more complicated “sharing-based” approach that generalizes
the OR-based construction of Lemma 3.3. The idea is to use a set system S(·) in a similar way to
the OR-based construction, but to encrypt the message M differently: Instead of encrypting the
message M da times, first construct some “shares” M1, . . . ,Mda of M , and then encrypt each Mi

using αi. To get the completeness and the security, we need the following two properties.

• Completeness: For every f ∈ F such that f(a) = 1, the set of indices IS(a, f) = {j |
∃ϕ ∈ S(f) such that ϕ(αj) = 1} is rich enough so that {Mi | i ∈ IS(a, f)} can be used to
reconstruct M .

• Security: For every choice of a∗, f∗, f1, . . . , fk for k = poly(κ) such that f∗(a∗) = 1 and fi(a∗) =
0 for all i ∈ [k], it holds that CS(a∗, f∗) 6⊆ ∪j∈[k]CS(a∗, fj), where CS(a, f) = {αi | i ∈
IS(a, f)}. This is because otherwise the adversary can acquire keys for f1, . . . , fk and use
the sub-keys planted in them to decrypt enough number of shares of Mi’s and reconstruct M
which is encrypted under the attribute a∗.

As we will see, despite the fact that the sharing-based approach is more general than the OR-
based approach, for the case of polynomial sized sets q = poly(κ), the construction of Lemma 3.3
is indeed as powerful as any sharing-based approach.

Lemma 3.4. There is a sharing based construction for the predicate system F using G if and only
if there exists an OR-based construction.

Proof of Lemma 3.4. First suppose there is an OR-based construction for F using G using the set
system S(·). By Definition 3.2 and the definition of the sharing based construction S(·) is already
a sharing based construction as well, because CS(a∗, f∗) 6= ∅, but CS(a∗, fj) = ∅ for all j ∈ [k]
which implies the condition required for the sharing-based construction.

Now suppose that S(·) is a sharing based construction with set sizes q = poly(κ) for F using G.
Define the set system T (·) as follows: For every pair a ∈ A, f ∈ F such that f(a) = 0 and recall the
set CS(a, f) = {α | α ∈ S(a),∃ϕ ∈ S(f), ϕ(α) = 1}, and update a new value for S(a) according to
S(a)← S(a) \ CS(a, f). After all these changes (which do not apply to any S(f)) take T (·) to be
the new updated set system S(·). Now we claim that G can compute F using the set system T (·):

9

• First look at any pair a ∈ A, f ∈ F such that f(a) = 0. Then by the definition of T (·) we
have already removed the set CS(a, f) from T (·) and therefore it holds that∨

α∈S(a),ϕ∈S(f)

ϕ(α) = 0.

• Now consider any pair a ∈ A, f ∈ F such that f(a) = 1 and suppose for sake of contradiction
that

∨
α∈T (a),ϕ∈T (f) ϕ(α) = 0, which is equivalent to CT (a, f) = ∅. Since S(·) was of set-size

q, then we can always find a sequence f1, . . . , fk of length k ≤ q (or even potentially k = 0)
such that they can “represent” the changes in S(a), namely T (a) = S(a) \ ∪i∈[k]CS(a, f),
which together with CT (a, f) = ∅ and T (f) = S(f) implies that

CS(a, f) ⊂
⋃
i∈[k]

CS(a, fi).

Note that also by definition of the way we changed S(·), for all i ∈ [k] holds that fi(a) = 0.
Thus, the set {a, f, f1, . . . , fk} violates the security requirement of the sharing-based method.

3.3 A Combinatorial Argument Refuting OR-Based Constructions

Recall that by proving Theorem 4.1 we shall rule out the OR-based (and sharing-based) construc-
tions of Section 3 along the way. A special case of the following combinatorial lemma shows that no
OR-based (nor sharing-based) construction of τ -TPE from IBE exists for any constant 0 < τ < 1.
Moreover, not surprisingly, we will use this lemma in our proof of Theorem 4.1.

Lemma 3.5. Let F = A = {0, 1}κ denote the set of attributes and predicates for τ -TPE for a
constant 0 < τ < 1. Also suppose that the following sets of size at most q = poly(κ) are assigned
to F, A, and F × A : S(a) for a ∈ A, S(f) for f ∈ F, and S(a, f) for (a, f) ∈ A × F. 1 Then,
there exists a sampling algorithm Samp that, given an input parameter ε > 1/ poly(κ), outputs
k + 1 = poly(κ) pairs (f∗, a∗), (f1, a1), . . . , (fk, ak) such that with probability at least 1− ε over the
randomness of Samp the following holds:

1. f∗(a∗) = 1 and fi(ai) = 1 for all i ∈ [k] (this part holds with probability 1),

2. fi(a∗) = 0 for all i ∈ [k],

3. S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) ⊆
⋃
i∈[k] S(ai, fi).

Moreover, the algorithm Samp chooses its k+ 1 pairs without the knowledge of the set system S(·).
Therefore we call Samp an oblivious sampler against predicate structure of τ -TPE.

1Note that although F = A, the sets S(a) for a ∈ A and S(f) for f ∈ F are potentially different even if a and f
represent the same string. Intuitively the set S(a) refers to the set of sub-attributes (or identities in case of using
IBE as the black-box primitive) used during an encryption of a random message under the attribute a, the set S(f)
refers to the set of decryption-keys planted in the decryption-key of f , and finally S(a, f) refers to the decryption-keys
discovered during the decryption of the mentioned random encryption (under the attribute a) using the generated
key for f .

10

Proof of Lemma 3.5. Let A be the set of vectors in {0, 1}κ of normalized Hamming weight τ ,
namely A = {a | a = (a1, . . . , aκ) ∈ {0, 1}κ,

∑
i ai = τ · κ}. Also let F be the set of vectors in

{0, 1}κ of normalized Hamming weight τ ′ = τ + 1−τ
2 . Consider a bipartite graph G with nodes

(A,F) and connect a ∈ A to f ∈ F iff f(a) = 1 according to τ -TPE (i.e., the indexes of the
nonzero components of a is a subset of those of f). We will later use the fact that G is a regular
graph (on its F side). For any vertex x in G let N(x) be the set of neighbors of x in the graph G.

The covering-sampler acts as follows:

• Choose p = poly(κ) and h = poly(κ) to satisfy q(1
p + 1

h + (1− 1
h)p) < ε

2 (e.g., this can be done
by setting h =

√
p and choosing p large enough).

• Choose f∗
$←F at random.

• Choose a∗, a1, . . . , ap
$←N(f∗) at random with possible repetition from the neighbors of f∗.

• For each i ∈ [p], choose p random neighbors fi1, . . . , fip
$←N(ai) of ai (repetition is allowed).

• Output the p2 + 1 pairs: (a∗, f∗), (ai, fij)i∈[p],j∈[p].

Now we prove that with probability at least 1− ε/2− neg(κ) > 1− ε the output pairs have the
properties specified in Lemma 3.5.

Property (1) holds by construction.
Since 0 < τ < τ ′ < 1 are constants, using standard probabilistic arguments one can easily show

that the probability of fij being connected to a∗ in G (i.e., fij(a∗) = 1) is neg(κ) (given a∗, ai are
random subsets of f∗, a random superset fij of ai is exponentially unlikely to pick all the elements
of a∗). Thus (2) holds.

The challenging part is to show that (3) holds, i.e., the following: With probability at least
1 − q(1

p + 1√
p + (1 − 1√

p)p) ≥ 1 − ε/2 it holds that S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) ⊂ ∪ijS(ai, fij). The

proof will go through several claims.
In the following let h =

√
p.

For an attribute node a ∈ A of G, define H(a) to be the set of “heavy” elements that with
probability at least 1/h are present in S(a, f) for a random neighbor f of a, i.e.,

H(a) = {x : Pr[x ∈ S(a, f) | f $←N(a)] > 1/h}.

Note that H(a) is not necessarily a subset of S(a).

Claim 3.6. Define BE1 to be the bad event “S(a∗) ∩ S(a∗, f∗) 6⊆ H(a∗).” Then, Pr[BE1] ≤ q/h.

Proof. Since G is regular on its F side, conditioned on a fixed a∗ the distribution of f∗ is still
uniform over N(a∗). Now fix a∗ and fix an element b ∈ S(a∗). If b is not in H(a∗), then over the

random choice of f∗
$←N(a∗), it holds that Pr[b ∈ S(a∗, f∗)] ≤ 1/h. The claim follows by a union

bound over the q elements in S(a∗).

Claim 3.7. Define BE2 to be the bad event “there exists a b ∈ S(f∗) such that b ∈ H(a∗) but for
every i ∈ [p], b 6∈ H(ai), i.e., S(f∗) ∩H(a∗) 6⊆ ∪iH(ai).” Then, Pr[BE2] ≤ q/p.

11

Proof. It is enough to bound BE2 by 1/p for a fixed b ∈ S(f∗) and the claim follows by union
bound over the elements of S(f∗). But when b ∈ S(f∗) is fixed, we can pretend that a∗ is chosen at
random from the sequence a0, . . . , ap after they are chosen and are fixed. In that case BE2 happens
if there is only a unique j ∈ {0, . . . , p} such that b ∈ H(aj) and a∗ chooses to be aj . The latter
happens with probability at most 1/(p+ 1) < 1/p.

Claim 3.8. Define BE3 to be the bad event “ given neither BE1 nor BE2 happens, S(a∗) ∩ S(f∗) ∩
S(a∗, f∗) 6⊆ ∪i,jS(ai, fij).” Then, Pr[BE3] ≤ q(1− 1/h)p.

Proof. We assume that the events BE1 and BE2 have not happened and do the analysis. By ¬BE1

we have S(a∗) ∩ S(a∗, f∗) ⊆ H(a∗). Moreover, since ¬BE2 holds, any element b ∈ S(f∗) ∩ H(a∗)
will be in H(ai) for at least one value i ∈ [p]. Therefore for each j ∈ [p], Pr[b ∈ S(ai, fij)] ≥ 1/h
holds by the definition of heavy sets, and thus b 6∈ ∪jS(ai, fij) can hold only with probability at
most (1− 1/h)p. By union bound, the probability that there exists a b ∈ S(a∗) ∩ S(f∗) ∩ S(a∗, f∗)
such that b 6∈ ∪jS(ai, fij) is bounded by q(1− 1/h)p.

From Claims 3.6, 3.7, and 3.8, it follows that (3) fails with probability at most q(1
p + 1

h + (1−
1
h)p) < ε

2 .
Therefore the sampled [a∗, f∗, {fij}i∈[p],j∈[p]] will have the desired properties with probability at

least 1− neg(κ)− ε/2 which finishes the proof of Lemma 3.5.

Remark 3.9 (Generalizing Lemma 3.5). We observe that, by going over the proof of Lemma 3.5
more carefully, it can be realized that the only required properties for the pair of sets (F,A) to
make the lemma hold are the following:

1. deg(f) = deg(f ′) for every f, f ′ ∈ F, and

2. for a random f ∈ F and two of its random neighbors a, a′ ∈ N(f), the probability that a and
a′ have another common neighbor f ′ ∈ F is a negligible function of κ. Roughly speaking this
says that the occurrence of a K2,2 in the bipartite graph G is unlikely or a random path of
length 3 is unlikely to be completed into a C4.

Even though the proof of the black-box impossibility of the next section would refute any
positive approach that includes as a special case the OR-based and sharing-based constructions, for
sake of clarity, we first point out directly why Lemma 3.5 refutes those constructions.

Corollary 3.10. For any constant 0 < τ < 1, there is no OR-based (nor sharing-based) construction
of τ -TPE schemes from IBE schemes. The claim holds also for any predicate encryption scheme
(other than τ -TPE) with the properties specified in Remark 3.9.

Proof. We directly refute sharing-based constructions and OR-based constructions are refuted as
well since every OR-based construction can be thought of a sharing-based construction as well.

Suppose S(·) is a set system determining a sharing-based construction for τ -TPE in which the
sets S(·) are defined for every predicate and attribute. We also define new sets S(a, f) = S(f)
for every (a, f) ∈ A × F. By definition of the OR-based construction from IBE, we note that
S(a∗) ∩ S(f∗) 6= ∅ (where we identify the identities and the corresponding decryption keys). This
way, it is easy to see that the sampling algorithm of Lemma 3.5 directly violates the security of the
original sharing-based construction by giving a valid decryption key in the set ∪iS(ai, fi).

12

3.4 The Communication Complexity Approach

In this section we show an alternative approach to refute sharing-based constructions of predicate
encryption schemes using separation results in two-party communication complexity. The strength
of this new approach is its generality. In particular, using conjectured separations in communication
complexity, we prove the impossibility of a sharing-based construction of NC1-PE from AC0-PE,
thus making some progress toward the question of separating PE schemes based on the complexity
classes the underlying predicates come from. On the other hand, we are currently able to apply
this approach only to sharing-based constructions rather than to general black-box constructions.
In contrast, Lemma 3.5 plays a critical role in our proof of full black-box separation of TPE from
IBE. Lemma 3.5 indeed proves a stronger result than needed to refute sharing-based constructions
from IBE as applied in Corollary 3.10. In particular, we are able to handle the sets S(a, f) on the
edges of the bipartite graph given by (A,F). These sets naturally arise in the attack strategy we
employ in our proof.

Let (A,F) be a predicate encryption scheme. W.l.o.g. we identify A with {0, 1}κ and think of F
as a family of functions {fb : {0, 1}κ → {0, 1}}b∈{0,1}κ , i.e., we assume for simplicity that |F| = 2κ

and its members are also indexed by b ∈ {0, 1}κ. We may sometimes abuse this notation a bit and
refer to b itself as a member of F. We can then talk about the communications complexity of F
when b ∈ F is given to Bob and a ∈ A to Alice. As usual, we can represent this communication
complexity problem by the {0, 1}-matrix with rows indexed by A and columns by F. With a little
more abuse of notation, we denote this matrix also by F = (fb(a))a,b and refer to the communication
complexity of F. Recall that the essential resource in communication complexity is the number of
bits Alice and Bob need to communicate to determine fb(a). Various models such as deterministic,
randomized (public or private coins), nondeterministic, etc., communication complexity can be
defined naturally. For details on such models, we refer to the classic book by Kushilevitz and
Nisan [24], the paper by Babai et al. [2], and the surveys by Lokam [28] and Lee and Shraibman [25].

To connect communication complexity to OR-based constructions using IBE, we use the model
of Merlin-Arthur games in communication complexity:

Definition 3.11 (Merlin-Arthur Protocols in Communication Complexity). A matrix F is said to
have an MA-protocol of complexity `+ c if there exists a c-bit randomized public-coin verification
protocol Π between Alice and Bob such that

• F(a, b) = 1⇒ ∃w ∈ {0, 1}` Pr[Π((a,w), (b, w)) = 1] ≥ 2/3,

• F(a, b) = 0⇒ ∀w ∈ {0, 1}` Pr[Π((a,w), (b, w)) = 1] ≤ 1/3.

The MA-complexity of F, denoted MA(F), is the minimum complexity of an MA protocol for the
matrix F.

With this definition, the well-known fact (see, for example, [24]) that EQUALITY has public
coin randomized communication complexity of O(1), and our Definition 3.2 of OR-construction,
the following lemma is easy.

Lemma 3.12. Suppose there is an OR-based construction of a predicate encryption scheme (A,F)
using an IBE scheme (B,G). Then MA(F) = O(log κ).

Proof. Merlin’s proof (a nondeterministic move) w can simply be the label of an input wire to the
OR gate, namely, ∨i,jϕ(αj). Since (B,G) is an IBE scheme, ϕi(αj) = 1 iff ϕi = αj , i.e., each of the

13

inputs to the OR gate is an EQUALITY function. Alice and Bob can run an O(1)-bit randomized
protocol to test this equality. This protocol is Arthur’s verification protocol. Since i and j are
bounded by poly(κ), it follows that the length of Merlin’s proof is ` = O(log κ), because w is simply
consisting of two indices i and j in the sets assigned to f and a. Thus MA(F) = O(log κ).

The following result due to Klauck [23] gives a matrix with high MA communication complexity:

Theorem 3.13 (Klauck). Let DISJ denote the disjointness matrix on sets in a universe of size κ,
i.e., DISJ(x, y) = 1 if and only if x∩ y = ∅ for x, y ⊆ [κ]. Then MA(DISJ) = Ω(

√
κ). This, in fact,

holds even when |x| = |y| = εκ for any constant ε with 1
4 ≤ ε <

1
2 .

Theorem 3.14. For some constant 0 < τ < 1, e.g., τ = 1/3, there is no OR-based (and hence no
sharing-based) construction of a τ -TPE scheme from IBE.

Proof of Lemma 3.14. By Lemma 3.12, if (A,F) has an OR-based construction from an IBE, then
the matrix F has MA-complexity at most polylog(κ). On the other hand, we will show that if
(A,F) defines a τ -TPE scheme with τ = 1/3, then F must have MA-complexity Ω(

√
κ). Recall

from Definition 2.7 that F(a, b) = 1 if and only if 〈a, b〉 ≥ κ/3. As in the proof of Lemma 3.5, we
consider the set of vectors A ⊆ A of Hamming weight κ/3 and F ⊆ F of Hamming weight 2κ/3
and threshold 1/3. Then it is clear that F(a, b) = 1 for a ∈ A and b ∈ F if and only if, as sets,
a ⊆ b, i.e., a ∩ b̄ = ∅. Thus let x, y ⊆ [κ], |x| = |y| = κ/3 be an input for DISJ. Define a to be the
characteristic vector of x and b to be that of b̄. It is then easy to see that 〈a, b〉 ≥ κ/3 if and only
if x ∩ y = ∅.

To derive separations among stronger predicate encryption schemes based on sharing construc-
tions, we need to recall definitions of languages and complexity classes in two-party communication
complexity, in particular, PHcc and PSPACEcc.

Complexity classes in two-party communication complexity are defined in terms of languages
consisting of pairs of strings (a, b) such that |a| = |b|. Denote by {0, 1}2∗ the universe {(a, b) : a, b ∈
{0, 1}∗ and |a| = |b|}. For a language L ⊆ {0, 1}2∗, we denote its characteristic function on pairs
of strings of length κ by Lκ. Lκ is naturally represented as an 2κ × 2κ matrix with {0, 1} or ±1
entries.

Conversely, if A = {AK} is an infinite sequence of {0, 1}-matrices (where AK is K ×K), then
we can associate a language LA with A and talk about its communication complexity. LA is not
necessarily unique (since the K’s may be different from powers of two), but for the purposes of
lower bounds we will fix one such language and refer to it as the language LA corresponding to A.

Definition 3.15. Let l1(κ), . . . , ld(κ) be nonnegative integers such that l(κ) :=
∑d

i=1 li(κ) ≤
(log κ)c for a fixed constant c ≥ 0.

A language L ⊆ {0, 1}2∗ is in Σcc
d if there exist l1(κ), . . . , ld(κ) as above and Boolean functions

ϕ,ψ : {0, 1}κ+l(κ) −→ {0, 1} such that (a, b) ∈ Lκ if and only if

∃u1 ∀u2 . . . Qdud (ϕ(a, u)♦ψ(b, u)),

where |ui| = li(κ), u = u1 . . . ud, Qd is ∀ for d even and is ∃ for d odd, and, ♦ stands for ∨ if d is
even and for ∧ if d is odd.

Definition 3.16.

14

• By allowing a bounded number of alternating quantifiers in Definition 3.15, we get an analog
of the polynomial time hierarchy: PHcc =

⋃
d≥0 Σcc

d .

• We get an analog of PSPACE, by allowing an unbounded, but no more than polylog(κ),
number of alternating quantifiers in Definition 3.15 : PSPACEcc =

⋃
c>0

⋃
d≤(log κ)c Σcc

d .

The following lemma shows a connection between the communication complexity class PHcc

and OR-based constructions using AC0-predicate encryption.

Lemma 3.17. Suppose a predicate encryption scheme (A,F) is obtained by an OR-based con-
struction using an AC0-predicate encryption scheme. Then the language given by the sequence of
matrices {F}κ is in PHcc.

Proof of Lemma 3.17. By hypothesis, for a given fb ∈ F, we have AC0 circuits ϕ1b, . . . , ϕqb and for
a given a ∈ A, we have α1a, . . . , αqa such that fb(a) = ∨i,jϕib(αja). Knowing fb, Bob can compute
the circuit

Cy(z) ≡
∨
ij

ϕiy(zj), where z = (z1, . . . , zq), |zj | = |αj |.

Knowing a, Alice can compute αa = (α1a, . . . , αqa) on which Cb needs to be evaluated.
We give a protocol with a bounded number of alternations for F. Let the depth of Cb be d

(including the top OR-gate). An existential player will have a move for an OR gate in Cb and
a universal player will have a move for an AND gate. Their d moves will describe an accept-
ing path in Cb on αa. For example, assuming AND and OR gates alternate in successive layers,
∃w1∀w2 · · ·Qdwdγ(Cb, w1, . . . , wd)(αa) describes a path in Cb – start with the top OR gate and
follow the wire w1 to the AND gate below and then the wire w2 from this gate and so on – ending
in a gate γ := γ(...) to witness the claim that fb(a) = 1. Since Bob knows Cb, he can verify the
correctness of the path w1w2 · · ·wk in the circuit and the type of the gate γ given by the path. He
then sends the labels of the inputs and the type (AND or OR) of the gate to Alice, who responds
with γ(αa). Bob can verify that this will ensure Cb(αa) = 1. On the other hand, if Cb(αa) = 0,
then it is easy to see that the existential player will not have a winning strategy to pass verification
protocol of Alice and Bob on their inputs a and Cb. It follows that F has a protocol with at most
d alternations and hence {F}κ ∈ PHcc.

This lemma enables us to show the impossibility of OR-based (hence sharing-based) construc-
tions of predicate encryption schemes using AC0-predicate encryption. In particular, if we can
separate PSPACEcc from PHcc, we can show that there’s no sharing-based construction of NC1-
predicate encryption using AC0-predicate encryption. However, it is a longstanding open question
in communication complexity to separate PSPACEcc from PHcc. Currently it is known [27, 32]
that such a separation holds if certain Boolean matrices can be shown to have high rigidity, a
connection we explain in Appendix ??.

Theorem 3.18.

1. Suppose PHcc 6= PSPACEcc. Then, there is no OR-based construction of an NC1-PE
scheme from any AC0-PE scheme. In particular, there is an NC1-function family F derived
from the Sipser functions such that (A,F) does not have an OR-based construction from any
AC0-predicate encryption scheme.

15

2. Suppose Hadamard matrices are as highly rigid as demanded in Theorem ??. Then there is
no OR-based construction of an NC1-PE scheme from any AC0-PE scheme. In particular,
predicate encryption defined by the Inner Product mod 2 function does not have an OR-based
construction from any AC0-predicate encryption scheme.

Proof. Suppose PHcc 6= PSPACEcc. Let ψ : {0, 1}κ × {0, 1}κ → {0, 1} be the following “Sipser
function” of depth log 2κ: it is a complete binary tree with alternating layers of AND and OR gates
and each of the bottom gates receives as inputs an ai and a bi for 1 ≤ i ≤ κ. Computing ψ(a, b)
when Alice holds a ∈ {0, 1}κ and Bob holds b ∈ {0, 1}κ is easily seen to be a PSPACEcc-complete
problem. Hence it is not PHcc. It is also obvious that for any fixed b, ψ(·, b) is an NC1 function.
Defining A = {0, 1}κ and F = {ψ(·, b)}b, we see that (A,F) is an NC1-PE problem. Since the
language given by F is not in PHcc, by Lemma 3.17, we conclude that (A,F) does not have an
OR-based construction from any AC0-predicate encryption.

Consider the Inner Product mod 2 function: ip2(a, b) :=
∑κ

i=1 aibi mod 2 for (a, b) ∈ {0, 1}κ ×
{0, 1}κ. The corresponding {−1,+1}-matrix H = ((−1)ip2(a,b))a,b is well-known to be an Hadamard
matrix. Thus if Hadamard matrices are sufficiently rigid to apply Theorem ??, we can conclude
that the communication problem given by ip2 is not in PHcc. Now, the proof of the second part is
similar to the above.

4 Separating TPE from IBE

In this section we prove that there is no general black-box construction of threshold predicate
encryption schemes from identity-based encryption schemes.

Theorem 4.1. Let κ ∈ N be the security parameter. Then, there exists an oracle O relative to which
CCA secure IBE schemes exist, as per the Definition 2.5. However, for any constant 0 < τ < 1,
there exists a query-efficient (i.e., that makes at most poly(κ) queries to O) adversary Adv that can
break even the CPA security of any τ -TPE scheme relative to O, again as per the Definition 2.5.
Moreover, Adv can be implemented in poly(κ)-time if given access to a PSPACE oracle, and its
success probability can be made arbitrarily close to the completeness of the τ -TPE scheme.

In the next three subsections, we prove this theorem. Even though our overall proof strategy is
somewhat similar to that of [11], there are several conceptual and technical differences as explained
in the introduction. In Section 4.1, we define our random IBE oracle, prove some of its properties,
and define some operations that allow us to assume a nice structure for such an oracle. In Section 4.2
we describe our attack on a τ -TPE relative to this IBE oracle. Finally, we analyze this attack for
query efficiency and success probability in Section 4.3. Lemma 4.13 gives a lower bound on the
success probability of the attack. Its proof involves three experiments and estimating the statistical
distance between successive pairs in them. The analysis also uses the combinatorial lemma 3.5.

4.1 The Oracle

We begin the proof of Theorem 4.1 by first defining our random IBE oracle, OIBE, also denoted
by O for short, (which trivially implies a CCA secure IBE as outlined in Remark 4.3), and then
breaking any τ -TPE (with a constant τ) relative to this oracle.

Construction 4.2 (The randomized oracle O = (g,k, id, e,d)). By Oλ we refer to the part of O
whose answers are λ bits, and O is the union of Oλ for all λ.

16

• The master-key generating oracle g : {0, 1}λ 7→ {0, 1}λ is a random permutation that takes as
input a secret-key sk ∈ {0, 1}λ, and returns a public-key pk ∈ {0, 1}λ.

• The decryption-key generating oracle k : {0, 1}2λ 7→ {0, 1}λ takes as input a secret-key sk ∈
{0, 1}λ and an identity α ∈ {0, 1}λ, and returns a decryption-key dkα ∈ {0, 1}λ. We require
k(sk, ·) to be a random permutation over {0, 1}λ for every sk ∈ {0, 1}λ.

• The identity finding oracle id : {0, 1}2λ 7→ {0, 1}λ takes as input a public-key pk ∈ {0, 1}λ
and a decryption-key dk ∈ {0, 1}λ, and returns the unique α such that k(sk, α) = dk, where
sk = g−1(pk).

• The encryption oracle e : {0, 1}3λ 7→ {0, 1}λ takes as input a public-key pk ∈ {0, 1}λ, an
identity α ∈ {0, 1}λ and a message m ∈ {0, 1}λ, and returns a ciphertext c ∈ {0, 1}λ. We
require e(pk, α, ·) to be a random permutation over {0, 1}λ for every (pk, α) ∈ {0, 1}2λ.

• The decryption oracle d : {0, 1}3λ 7→ {0, 1}λ takes as input a public-key pk ∈ {0, 1}λ, a
decryption-key dk ∈ {0, 1}λ and a ciphertext c ∈ {0, 1}λ, and returns the unique m such that
e(pk, α,m) = c, where α = id(pk, dk).

By an IBE oracle, we refer to an oracle in the support set of O, Supp(O), and by a partial IBE
oracle we refer to a partial oracle that could be extended to an oracle in Supp(O).

Remark 4.3 (CCA secure IBE relative to O). To encrypt a bit b ∈ {0, 1} under the identity α
and the public-key pk, the encryption algorithm will randomly extend b to a λ-bit random string:

m = (b, b1, . . . , bλ−1), (b1, . . . , bλ−1)
$←{0, 1}λ−1 and gets the encryption c = e(pk, α,m). To decrypt,

one first decrypts c and then take the first bit as the encrypted bit. By independently encrypting
the bits of an input message m = (m1, . . . ,mn) of length n = poly(κ), and by using a standard
hybrid argument, one can generalize the scheme to arbitrary long messages. The construction that
we briefly described above is only CPA secure, where any adversary has advantage at most 2−Θ(κ).
But, this can easily and in a black-box manner be transformed into a CCA secure construction,
without incurring any additional assumptions, using the Fujisaki-Okamoto transform [15,16] in the
random oracle model [6]. We note that even though O is not exactly a random oracle, for our
purposes it suffices to use one of the sub-oracles of O as a random oracle in the above transform.

The sub-oracle id is not required to get a secure IBE scheme, it will be used by our query-efficient
adversary who breaks any τ -TPE scheme (for constant τ) relative to O. We also note that adding
this sub-oracle to O does not prevent O from realizing a secure IBE scheme. It is easy to see that
in the IBE security game (as a special case of the security game of predicate encryption), for every
decryption-key that he gets from the challenger, the adversary already knows the corresponding
identities.

As we will see later, any τ -TPE scheme (for constant τ) relative to O can be broken by a
poly(κ)-query adversary which suffices to get a black-box separation of τ -TPE from IBE. Since our
adversary can be easily implemented efficiently given access to a PSPACE-complete oracle, it also
shows that no relativizing reduction from τ -TPE to IBE) exists either [20]2.

To describe and analyze our attack, we first need to formally define and study some properties
of our random IBE oracle O.

2A good “approximation” of the attack can also be implemented assuming P = NP.

17

Definition 4.4 (Root, Dual, Triangle). Let O = (g,k, id, e,d) be the (randomized) oracle of
Construction 4.2.

• For any (sk, pk, α, dk) ∈ {0, 1}4λ, if g(sk) = pk and k(sk, α) = dk, then we call g(sk) = pk the
root query; k(sk, α) = dk and id(pk, dk) = α the dual (to each other) queries; and all three
of them the triangle.

• For any (pk, α, dk,m, c) ∈ {0, 1}5λ, if id(pk, dk) = α and e(pk, α,m) = c, then we call
id(pk, dk) = α the root query; e(pk, α,m) = c and d(pk, dk, c) = m the dual (to each other)
queries; and all three of them the triangle.

Definition 4.5 (Closure of Partial IBE Oracles). Let P = (g,k, id, e,d) be a partial IBE oracle.
By the closure of P, denoted as P = (g,k, id, e,d) we refer to another partial oracle which contains
P as a subset and in addition it might have answers defined for more queries as follows.

1. If [g(sk) = pk] ∈ P then:

(a) If [k(sk, α) = dk] ∈ P then add the dual query id(pk, dk) = α to P.

(b) If [id(pk, dk) = α] ∈ P then add the dual query k(sk, α) = dk to P.

2. If [id(pk, dk) = α] ∈ P (even if [id(pk, dk) = α] 6∈ P) then:

(a) If [e(pk, α,m) = c] ∈ P, then add the dual query d(pk, dk, c) = m to P.

(b) If [d(pk, dk, c) = m] ∈ P, then add the dual query e(pk, α,m) = c to P.

In all the cases above, the dual query which is added to P is called the dependent query (with
respect to P). For any query x, if x 6∈ P we call x a free query (again, with respect to P).

Definition 4.6 (Normal Form). We say an oracle algorithm AO is in normal form, if:

• When A is about to ask an oracle query x of the form k(sk, α) = dk, then before asking x, it
makes the query g(sk) = pk, and after asking x it also makes the query id(pk, dk) = α.

• When A is about to ask an oracle query x of the form d(pk, dk, c) = m, then before asking x,
it makes the query id(pk, dk) = α, and after asking x it also makes the query e(pk, α,m) = c.

By the normalized version of an algorithm A, we denoted the modified (but with the same func-
tionality as before) version of it that asks some required additional queries as above, so that the
resulting algorithm is in normal form. We also call a partial oracle P = (g,k, id, e,d) normalized
if it has the following two properties:

• If [k(sk, α) = dk] ∈ P, then g(sk) = pk and id(pk, dk) = α are also defined in P for some pk.

• If [d(pk, dk, c) = m] ∈ P, then id(pk, dk) = α and e(pk, α,m) = c are also defined in P for
some α.

The view of any normalized algorithm A clearly contains a normalized partial oracle.

Note that by normalizing any algorithm, the number of queries that it asks increases by at most
a factor of 3.

18

Closure of Normalized Partial Oracles. When we take the closure of a normalized par-
tial oracle P, a slightly simpler definition can be used. In particular, in the second bullet of
Definition 4.5, we can condition at the case [id(pk, dk) = α] ∈ P (rather than using the con-
dition [id(pk, dk) = α] ∈ P). This is because due to normal form property, the query/answer
id(pk, dk) = α already exists in P. This modification of the definition of closure will simplify some
of our arguments in the next subsections. Note that for a normalized partial oracle P, taking the
closure can at most double the number of queries: |P| ≤ 2 · |P|.3

The next two lemmas hold in a more general setting where normal form is not required, but the
proof is easier in the case of normal form (and we only need this special case), so we only specify
and prove them in the special case of normal form.

Lemma 4.7 (Lazy Evaluation). Suppose P is a partial IBE oracle over queries of output length
λ (i.e., there exists Q ∈ Supp(Oλ) such that P ⊆ Q), and let |P| = t (i.e., there are t queries
defined in P) and t < 2λ−1. Then, for any query x to O which is not inside the closure of P (i.e.,
x 6∈ P), the statistical distance between the answer of O conditioned on P being part of O (i.e.,
(O(x) | P ⊆ O)) and the uniform distribution over {0, 1}λ is at most O(t/2λ). (Note that the
answers to the queries in P are already fixed.)

Proof of Lemma 4.7. We can assume w.l.o.g. that P = P (because otherwise we can let Q = P
and work with Q instead of P). We call such partial oracles P = P self-closured. We also simply
assume that t is still the size of P (even though its value might change by a factor of 2 after moving
to the closure of P).

The proof has the following general steps: (1) For a self-closured P we present a randomized
procedure that samples a full oracle from the distribution (Oλ | P ⊆ Oλ). (2) Then we will show
that during the above randomized sampling process, the answer to any query x such that x /∈ P,
is chosen O(t/2λ)-close to uniform over {0, 1}λ.

For starters suppose the IBE oracles does not have any encryption e or decryption d part
and only consists of (g,k, id). A crucial point is that for any (sk1, pk1) 6= (sk2, pk2) ∈ {0, 1}2λ,
if [g(sk1) = pk1] ∈ O and [g(sk2) = pk2] ∈ O, then the queries to k and id sub-oracles that are
related to (sk1, pk1) (i.e., their first input is either of sk1 or pk1) are answered independently of the
queries that are related to (sk2, pk2). Based on (variants of) this simple observation (and relying
on the fact that P is a normal self-closured partial oracle of size t), in the simplified case of IBE
oracles (without e and d sub-oracles), we can extend the partial oracle P to a full oracle as follows:

1. For every query [g(sk) = pk] ∈ P, we finish sampling the queries (and their responses) to k
and id sub-oracles that are related to (either of) (sk, pk). Note that since P is self-closured,
for every query to k or id that involves (either of) (sk, pk), its dual is also already defined in
P. So, all we have to do is to randomly match the remaining queries that involve (sk, pk) in
dual pairs. The answers that are sampled in this step are chosen uniformly at random from a
space of size at least 2λ − t, and so the answers are O(t/2λ)-close to uniform. After this step
all the k and id queries that could be related to (sk, pk) are defined.

At this point we say that we have covered all the g(sk) = pk queries inside P. We also say
that a k or id query inside P is covered in this step, if they are related to some (sk, pk)
such that g(sk) = pk is covered. Note that all the k queries of P will be covered in the step
for sure, because due to the normal form property of P all of the k(sk, ·) queries make the
relevant g(sk) = pk query to be asked (and exist in P) as well.

3For general partial oracles P, it holds that |P| ≤ O(|P|).

19

2. In this step we go over the remaining uncovered queries of P which could only be some id
queries. For any such query [id(pk, dk) = α] ∈ P, we would like to sample some sk ∈ {0, 1}λ
and set g(sk) = pk, but we want to do it from its correct distribution conditioned on the
sampled parts of O and P. It is easy to see that the distribution of sk in this case is
completely uniform among all the sk’s such that the query g(sk) is not already covered.

3. After sampling some sk and pairing them with some pk’s for all the queries of the form
[id(pk, dk) = α] ∈ P in the previous step, now we can go over these newly generated mappings
g(sk) = pk, and cover their related k and id queries as in Step 1.

4. Then, we go over all the unused pk’s and sk’s and randomly pair them together to complete
the description of the sub-oracle g. In this step also, the answers are chosen from a space
that is of size at least 2λ − t.

5. For any mapping g(sk) = pk generated in the previous step, we choose a random permutation
over {0, 1}λ and use that permutation to define the relevant k and id queries.

If we go over the above steps, it can be seen that the only step that the sampled answers might
not be chosen from a space of size at least 2λ − t is in Step 2. In particular, suppose sk is selected
in this step and is assigned to some already fixed pk through the query g(sk) = pk. The key point
is that for any such fixed query g(sk) out of P the probability that it is chosen to be mapped to
some fixed pk is at most t/2λ, simply because the number of such pk’s is at most t. On the other
hand, if sk is not selected in Step 2, its answer will be chosen in other steps which will be from
a space of size at least 2λ − t. Therefore, the statistical distance between the sampled answer to
g(sk) and the uniform over {0, 1}λ will be at most t/2λ +O(t/2λ) which is still O(t/2λ).

For the general case of IBE oracles, we follow a similar sampling procedure and then will study
the statistical distance between the sampled answers and the uniform distribution over {0, 1}λ. The
sampling has more steps, and we choose to write it more concisely (some of the steps corresponding
to the simplified case above will be merged into one step), but the main ideas are very similar to
the simpler case of IBE oracles studied above.

1. For every query [id(pk, dk) = α] ∈ P, consider all the e and d queries that potentially can
be related to (pk, dk, α) (i.e., they are of the form e(pk, α, ·) or d(pk, dk, ·)). Since P is self-
closured, the subset of these queries that are inside P can be partitioned into dual pairs. So,
we go over all the new e,d queries (out of P) that relate to (pk, dk, α) and randomly partition
them into dual pairs of queries. (Similar to the simplified case above, due to normal form
property of P, after this step there will be no d query in P that is not covered.

2. We go over all the queries of the form [e(pk, α,m) = c] ∈ P that are not covered in the
previous step. If no sk is mapped to this pk we sample a random sk (from the ones that are
not used yet) and add g(sk) = pk to the set of sampled queries. Then we finish sampling
the k and id queries that are related to the pair (sk, pk). A crucial point is that at the end
of this step, we sample at most t new dk’s and assign them to some (sk, pk) pair such that
[e(pk, α,m) = c] ∈ P. Moreover, these (at most) t sampled dk’s are chosen uniformly from a
set of size at least 2λ−t. Therefore, for any particular fixed dk, the probability that we choose
it and sample the query id(pk, dk) = α (while [e(pk, α,m) = c] ∈ P) is at most t/(2λ − t)
which is still O(t/2λ) for t < 2λ/2.

20

3. For every query [e(pk, α,m) = c] ∈ P handled in the previous step, let dk be the sampled
decryption key such that id(pk, dk) = α is sampled there. Now, we go back to finish covering
all the queries that could be related to (pk, dk, α) (similar to Step 1). An important point is
that in this step, the d queries that are covered and are of the form d(pk, dk, c) might not
be answered from a close-to-uniform distribution, and their answers might be already fixed
to to some existing uncovered e(pk, α,m) = c query of P. However, for any fixed such query
d(pk, dk, c), as we discussed at the end of the previous step, the probability that this dk is
sampled in some query id(pk, dk) = α, is at most O(t/2λ), and thus its answer is still chosen
O(t/2λ)-close to uniform.

The remaining three steps are similar to the sampling procedure of the simplified IBE oracles.

4. For every query [g(sk) = pk] ∈ P that is not covered in the previous step, go over all of its k
and id related queries and sample all of them that have not been sampled yet. At the end of
this step, there is no k query inside P which is not covered yet.

5. For every uncovered query [id(pk, dk) = α] ∈ P, sample an unused sk, and add the g(sk) = pk
to the set of sampled queries. Then, go over all the k and id queries that are related to
g(sk) = pk and randomly partition the remaining queries into dual pairs. Then, for all
of the queries of the form id(pk, dk) = α covered in this step (which are in or out of P)
generate a random permutation and use this permutation to define the e,d queries related
to id(pk, dk) = α.

6. Randomly pair all the remaining sk and pk’s to finish sampling of g. Then, for each new
sampled query g(sk) = pk, generate a random permutation over {0, 1}λ and use it to define
the k and id queries that are related to (sk, pk). Finally, for each sampled query id(pk, dk) = α
of this step, generate a random permutation over {0, 1}λ and use it to define the e and d
queries that are related to (pk, dk, α). This finishes the sampling of the full oracle O by
extending P.

In the sampling procedure above, the only steps in which some of the sampled answers might
not be chosen from a space of size at least 2λ − t are Steps 3 and 5. We already explained why
Step 3 does not violate our claim of Lemma 4.7, and Step 5 is identical to the case that we studied
in the simplified case earlier.

Below is an important remark that will be crucial in many of the proofs.

Remark 4.8. Suppose A is a normalized algorithm asking t oracle queries to Oλ. Now, instead
of feeding Oλ to A, suppose we do the following: whenever a new query is in the closure of the
A’s currnet view’s set of queries, we use the determined answer, otherwise we use a uniformly
random answer from {0, 1}λ. Lemma 4.7 shows that this “lazy evaluation” of the oracle Oλ is∑

i∈[t]O(i/2λ) = O(t2/2λ)-close to the experiment of executing A using Oλ.

Lemma 4.9 (Malformed Triangles). Suppose A is a normalized algorithm asking t oracle queries
to our random IBE oracle Oλ. Also, let there be three queries x1, x2, x3 in the view of A which
form a triangle with x1 as its root. We say that the view of A has a malformed triangle (call it
the event B), if the first appearance of x1, the root of the triangle, in the view of A is not the first
among {x1, x2, x3}, the triangle. It holds that Pr[B] ≤ O(t2/2λ).

21

Proof of Lemma 4.9. By Lemma 4.7 and Remark 4.8, if we use a lazy evaluation of the oracle
Oλ, then the distribution of the view of the algorithm A changes by at most a statistical distance
of O(t2/2λ). But when we use the lazy evaluation, at any time that a free query is asked, the
probability that it becomes the root of a malformed triangle is at most O(t/2λ). In particular,
when g(sk) is asked for the first time and is going to be the root of a malformed triangle that
includes a previously asked query id(pk, dk) = α, we would get pk as the answer to g(sk) only with
probability at most 1/2λ. (Note that the previously asked node of the triangle could not be the
query k(sk, α) = dk, because A is normalized, and therefore the query k(sk, α) would make g(sk)
to be asked even before itself!).

Similarly, suppose the query id(pk, dk) is being asked for the first time and is going to be the
root of a malformed triangle. Similar to the argument above, the previously asked node of this
triangle can not be a query of the form d(pk, dk, c), because then id(pk, dk) would have already
been asked from the oracle. So, suppose the previously asked node of the triangle is a query of the
form e(pk, α,m) = c. In this case, if id(pk, dk) is a free query in the view of A at the time of being
asked, then it will be responded α with probability at most 2−λ, and if it is due to an (inherently
free) query of the form k(sk, α) (which, due to the assumed normal form property is asked right
before id(pk, dk)), the answer to this query would be dk with probability at most 2−λ.

By a union bound, the probability of getting a malformed triangle in the lazy evaluation of A
is at most t2/2λ. By incorporating the statistical distance of moving to the lazy evaluation, the
probability of getting a malformed triangle remains at most t2/2λ +O(t2/2λ) = O(t2/2λ).

4.2 Our Attack

In this section we present an attack that aims to break any τ -TPE in an O-relativized world by
asking only poly(κ) queries to the random IBE oracle O, where κ is the security parameter of
the τ -TPE scheme. We prove the query-efficiency and the success probability of our attack in the
next section. Similar to the attack of [11], our attack can easily be implemented in poly(κ)-time if
P = PSPACE, and the relativizing reductions can be ruled out by adding a PSPACE oracle to
O.

We first note that any black-box construction of τ -TPE scemes from IBE schemes can poten-
tially call the oracle Oλ over different values of λ which are potentially different from the security
parameter of the τ -TPE scheme itself. However, similar to [11], we assume that the τ -TPE scheme
asks its queries to Oλ only for one value of λ. This assumption is purely to simplify our presentation
of the attack and its analysis, and all the arguments below extend to the general case (of asking
queries over any parameter λ > log s) in a straightforward way.

We also assume that λ is large enough in the sense that 2λ > s for an arbitrarily large s = poly(κ)
that can be chosen in the description of the attack. The reason for the latter assumption is that
the adversary can always ask and learn all the oracle queries to O that are of logarithmic length
O(λ) = O(log κ), simply because there are at most 2O(λ) = poly(κ) many queries of this form.4

Now we describe our attack algorithm that participates in the security game of τ -TPE schemes
in a relativized world with access to the oracle O of Construction 4.2. In the next section, we will
show that this adversary succeeds in breaking the security with a high probability.

Construction 4.10 (Adv Attacking the Scheme τ -TPEO). The parameters are as follows. q:
the total number of queries asked by the components of the scheme τ -TPE all together, κ: the

4In [11] a scheme that asks such queries is called “degenerate” and is handled similarly.

22

security parameter of τ -TPE, ε = 1/poly(κ) and s = poly(κ): input parameter to the adversary
Adv, λ ≤ poly(κ): the parameter which determines the output length of the queries asked by the
components of τ -TPE to the oracle O. It is assumed that 2λ > s for some s = poly(κ) to be chosen
later.

Our adversary Adv executes the following.

1. Sampling Predicates and Attributes: Adv executes the sampling algorithm Samp of
Lemma 3.5 with the parameter ε, over the predicate structure of τ -TPE, to get k + 1 pairs
(a∗, f∗), {(ai, fi)}i∈[k]. Recall that this sampling is done only by knowing the predicate struc-
ture of τ -TPE and is independent of the actual implementation of the scheme. It can be
done, for example, without the knowledge of PK.

2. Receiving the Keys: Adv receives from the challenger: the public-key PK and the decryption-
keys {DKi}i∈[k], where DKi is the generated decryption-key for fi. We also assume that DK∗
is generated by the challenger, although Adv does not receive it. Let V be the view of the
algorithms executed by the challenger so far that generated the keys PK,DK∗,DK1, . . . ,DKk.
Let Q(V) be the partial oracle consisting of the queries (and their answers) specified in V .
By writing in the bold font V, we refer to V as a random variable.

3. Encrypting Random Bits: For all i ∈ [k], Adv chooses a random bit d
$←{0, 1}, computes

the encryption Ci ← E(PK, ai, d), and then the decryption D(PK,DKi, Ci). Let L0 be the
partial oracle consisting of the oracle queries (and their answers) that Adv observes in this
step.

4. Learning Heavy Queries: This step consists of some internal rounds. For j = 1, 2, . . . do
the following. Let Lj be the partial oracle consisting of the oracle queries (and their answers)
that Adv has learned about O till the end of the j’th round5 of this learning step. Let
Vj = (V | Lj ,PK, {DK}i∈[k]) be the distribution of the random variable V (also including the
randomness of O) conditioned on the knowledge of (Lj ,PK, {DK}i∈[k]). Now, if there is any

query x such that x 6∈ Lj but Pr[x ∈ Q(Vj)] ≥ ε, Adv asks the lexicographically first such
x from the oracle O, sets Lj+1 = Lj ∪ (x,O(x)), and goes to round j + 1. In other words,
as long as there is any new query x that is ε-heavy to be in the closure of the queries of the
view of the key-generations, Adv asks such a query x. If no such query exists, Adv breaks
the loop and goes to the next step.

(Note that the above and the following steps may require a PSPACE-complete oracle to be
implemented efficiently.)

5. Guessing Challenger’s View: Let L be the partial oracle consisting of the oracle queries
(and their answers) that Adv learned in Steps 3 and 4 (i.e., L = L`, where Q(V`) had no

ε-heavy queries to be learned). Let Vchal = (V | L,PK, {DKi}i∈[k]), and sample V ′
$←Vchal.

Let SK′ and DK′∗ be in order, the “guessed” values for the secret-key and the decryption-key
of f∗ determined by the sampled V ′. We note that by definition the other keys PK′, {DK′i}i∈[k]

determined by V ′ are the same as the ones that Adv has received: PK, {DKi}i∈[k].

5Step 3 can be thought of as the 0’th round.

23

6. Receiving the Challenge and the Final Decryption: Adv receives C∗(= EO(PK, a∗, b))
for a random bit b ∈ {0, 1}. Then, Adv uses the oracle O′ defined below and outputs the
decrypted value b′ ← DO

′
(PK,DK′∗, C∗) as his guess about the bit b.

The Oracle O′: At the beginning of the decryption of Step 6 the partially defined oracle
O′ is equal to L ∪ Q(V ′), namely the learned queries (and their answers) together with the
guessed ones specified in V ′. Afterwards, if a new query x is asked:

• if x ∈ O′, return O′(x), otherwise

• if x ∈ O′, then return y = O′(x) and add (x, y) to O′, and finally

• if x 6∈ O′, ask x from O and add (x,O(x)) to O′.

4.3 Analysis of Our Attack

In this section we will show that our adversary asks only poly(κ) queries (on average), and it is
able to correctly decrypt the challenge ciphertext with probability close to the completeness of the
scheme τ -TPE.

Lemma 4.11 (Efficiency of Adv). The expected number of oracle queries asked by the adversary
of Construction 4.10 is at most O(kq/ε) = poly(κ), where k + 1 = poly(n) is the number of pairs
sampled in Step 1.

Proof of Lemma 4.11. Recall that in a full execution of the algorithms (G,K,E,D) of τ -TPE the
total number of queries asked is at most q. Therefore, the number of oracle queries asked by Adv
in Steps 3 and 6 is at most kq + q. The only step in which the number of oracle queries is unclear
is Step 4. Barak and Mahmoody [3] proved the following general lemma that can be used to argue
about the expected number of queries asked in Step 4.

Lemma 4.12 ([3]). Let A be some randomized algorithm that asks at most q oracle queries to some
(potentially randomized) oracle O and then outputs some message K. Let B be the algorithm that
receives K and keeps asking oracle queries to O as follows. Let L be the partial oracle consisting of
B’s knowledge about the oracle O at any moment. As long as there is any query x 6∈ L such that
Pr[x asked by A | K,L] ≥ ε, then B asks the first x satisfying this condition and adds (x,O(x)) to
L. Then, it holds that the expected number of queries asked by B is at most q/ε.

Barak and Mahmoody only (needed and) proved Lemma 4.12 for the case that O is a random
oracle, but the very same proof holds for any oracle. In our case, the adversary Adv receives
the partial information PK, {DKi}i∈[k] from the challenger which is similar to the way B gets K
from A. However, in Step 4, Adv keeps learning ε-heavy queries that are in the closure of the
queries of the view of the challenger. To handle this issue, we can think of the algorithm A as
the challenger’s algorithm who is generating the keys, but A in addition also asks the dependent
queries of the challenger’s view from the oracle O so that A’s view will be self-closured. This way,
the total number of queries asked by A might increase by a constant factor, but it will still be at
most O(kq). Now we can use Lemma 4.12 to conclude that the expected number of total number
of queries asked by Adv is at most kq +O(kq/ε) + q = O(kq/ε).

24

By stopping the adversary if his number of queries in Step 4 exceeds kq/ε2, we can assume that
Adv asks at most O(kq/ε2) = poly(κ) number of queries (in the worst case), and this will affect
Adv’s success probability only by O(ε).

Now we study the success probability of (this modified) Adv.

Lemma 4.13 (Success of Adv). Let ρ be the completeness of the scheme τ -TPE that Adv is
attacking, and let t = kq/ε2 + q(k + 1) be the upper-bound on the number of queries that are asked
by either Adv or the challenger. Then, Adv will correctly decrypt the challenge ciphertext (i.e.,
b′ = b) with probability at least ρ−O(qε+ t2/s).

By taking s = poly(κ) large enough one can make the success probability of Adv close to ρ. In
the rest of this section we prove Lemma 4.13.

4.3.1 Three Experiments and Their Outputs

For the proof of Lemma 4.13 we define three experiments: Attack,Hybrid, and Ideal. The first
one, Attack is the experiment in which the attack is performed, the third one, Ideal is an ideal
experiment with no adversary involved, and the second one, Hybrid is a hybrid experiment that
relates the probability of success in the other two experiments.

The outputs of the three experiments denoted Outatt,Outhyb, and Outidl are defined with re-
spect to the general structure of Construction 4.10 and consist of the following from the Experiment
Attack,Hybrid, and Ideal, respectively: the partial oracle L (i.e., part of O that is learned in
Steps 3 and 4), the sampled view V ′ of Step 5, and finally the view of the encryption and the
decryption performed in Step 6.

Now, we proceed with the detailed description of these experiments.

• Experiment Attack with output Outatt. This experiment is simply the attack played by
our adversary Adv, as defined in Construction 4.10.

• Experiment Hybrid with output Outhyb. Hybrid differs from Attack as follows:

1. The oracle O′ is used also in the encryption of the challenge bit b (in Step 6). Note that,
this way, the answers of O′ during the decryption of the challenge might also depend on
the previous answers returned by O′ during the encryption of the challenge.

2. The oracle O′ never forwards its queries to O and instead tosses coins to answer such
queries. More formally, if a new query x is asked such that x /∈ O′, the oracle O′

returns a random string y
$← {0, 1}λ, and adds [x 7→ y] to O′. Note that O′ does not

try to respect the permutation structure of the oracle O, but as we will see, due to the
assumed condition 2λ > s, the permutation structures will be preserved with a high
probability anyway.

In other words, after learning L and sampling V ′, the oracle queries in Hybrid are
answered using the lazy evaluation method as defined in Lemma 4.7 and Remark 4.8.

• Experiment Ideal with output Outidl. This experiment differs from the previous experi-
ments in two ways:

1. In the step of guessing the challenger’s view (Step 5), the sampled V ′ is chosen to be
equal to the real view of the challenger V .

25

2. The oracle O′ is simply the same as O.

Another way to describe Ideal is to say that there is no adversary, and the challenger is
generating the output Outidl by performing all the steps and simply taking V ′ = V .

At a high level, when compared to the experiments used in the proof of the main result of [11],
our Attack corresponds to their Exp0, our Hybrid corresponds to a combination of Exp1 and
Epx2 (which, in light of our simplifications, we found it easier to study their combination directly),
and finally, Ideal corresponds to their Exp3.

Lemma 4.13 follows from the following three lemmas in a straightforward way.

Lemma 4.14 (Success in Ideal). PrIdeal[b
′ = b] ≥ ρ.

Lemma 4.15 (Ideal versus Hybrid). ∆(Outidl,Outhyb) ≤ O(t2/s).

Lemma 4.16 (Attack versus Hybrid). ∆(Outatt,Outhyb) ≤ O(t2/s) +O(q · ε).

Lemma 4.14 is directly implied by the ρ-completeness of the underlying τ -TPE scheme.

Proof of Lemma 4.15. First we note that the joint distribution of the components of Outidl and
Outhyb which are sampled during Step 2 through Step 4 are identically distributed. Moreover,
although V ′ is not the real view of the challenger, since it is sampled from the distribution of
V conditioned on the previously sampled parts of the output, therefore the experiments Ideal
and Hybrid will produce their (partial) outputs during Step 2 through Step 5 from the same
distributions.

What remains is to compare the way the two experiments proceed in their final step of encrypting
and decrypting the challenge. The only difference here is that in Hybrid (as opposed to Ideal)
we are employing the lazy evaluation method to answer the oracle queries. Therefore Lemma 4.15
follows from Remark 4.8 and the assumed fact that 2λ > s.

It only remains to prove Lemma 4.16. Without loss of generality, we make the following as-
sumptions about the scheme τ -TPE and our adversary Adv.

Putting τ-TPE and Adv in Normal Form. In the following, we will assume w.l.o.g. that the
τ -TPE scheme is normalized. Note that putting a scheme into normal form does not change its
functionality, so the adversary can pretend that the scheme he is attacking is already in normal
form. This way, the number of oracle queries in the protocol, in the mind of the attacker, will
still be at most O(q), and this will affect the bounds of Lemma 4.11 and Lemma 4.13 only by a
constant factor, which because we present those bounds asymptotically, the statements will still
hold without any changes whatsoever. The main point is that when the adversary considers the
scheme to be in normal form, certain oracle queries that previously were not heavy conditioned on
its own view, might become heavy now, and that makes the adversary’s learning of the information
about the oracle O relatively more effective.

We will also assume that the adversary follows the normal form restrictions in his own learning
phase as well (i.e., Step 4). Namely, if he asks k(sk, α) = dk or d(pk, dk, c) = m, then he also
makes the relevant additional queries to follow the rules of normal form. Note that this change
in adversary’s algorithm could only improve the quality of the attack while increasing the query-
complexity of the attack by at most a constant factor.

26

Before going over the experiments Attack and Hybrid in parallel and bounding the statistical
distance between them, we note that Attack and Hybrid are different only in their last step of
encrypting and decrypting the challenge (i.e., Step 6). Thus, we can assume that when we get to
the final step, all the previous corresponding components of the two experiments are the same, and
then we study how both the experiments continue in generating their outputs. In fact, even during
the execution of Step 6, we continue to assume that the two experiments have proceeded in the
same way so far, and then bound the statistical distance between the answers of the next query in
both the experiments conditioned on some “bad” events not happening. And, we also bound the
probability of these bad events to be small.

We will refer to the bad events as (·)att, (·)hyb, along the comparison of the experiments Attack
and Hybrid (the index of the event indicating the experiment in which it is defined). We will take
the bigger bad events Batt and Bhyb to be the union of all the bad sub-events defined in Attack
and Hybrid, respectively, and will bound their probabilities by bounding the probabilities of all
the sub-events in each of the experiments. Then, Lemma 4.13 will follow from Lemma 2.2.

4.3.2 Defining and Bounding the Bad Events

Recall that in both experiments Attack and Hybrid, V is the real view of the key-generations,
and V ′ is the guessed value of V sampled by Adv in Step 5.

Definition 4.17 (Secret Queries). In the experiments Attack and Hybrid, for U ∈ {V, V ′}, we
define the secret queries of U as Q(U) \ L. Namely, these are the queries in the closure of U which
the adversary didn’t learn during Step 3 or the learning phase of Step 4.

Lemma 4.18. Let HITatt be the event that in the experiment Attack, during the final encryption
of Step 6, a secret query x of V ′ (i.e., x ∈ Q(V ′) \ L) is asked. It holds that Pr[HITatt] ≤ O(qε).

Proof. As a mental experiment, we can first finish the execution of the final encryption (which uses
the oracle O) and then go back and sample the view V ′ from its distribution Vchal. This way, the
probability of HITatt remains the same. But, since there is no ε-heavy query in the distribution of
Q(Vchal) \ L, and since there are a total of at most q queries in the view of the final encryption,
by a union bound the probability that any of them is in Q(Vchal) \ L is at most qε.

The following lemma bounds an event similar to that in Lemma 4.18, but in the experiment
Hybrid. Also, here we additionally include the queries of the final decryption.

Lemma 4.19. Let HIThyb be the event that in the experiment Hybrid, during the final encryption

and decryption of Step 6, a secret query x of V (i.e., x ∈ Q(V) \ L) is asked. It holds that
Pr[HIThyb] ≤ O(qε).

Proof. The proof is similar to that of Lemma 4.18, but since this time we are working in the
experiment Hybrid, we can go ahead and finish even the final decryption, and only then come back
and sample V from its distribution Vchal. We could not necessarily do it similarly in Attack,
because during the decryption of Attack we might forward queries to O due to the way O′ is
defined in Attack. By a similar union bound, the probability that any query x 6∈ L that is asked
during the final encryption or decryption of Step 6, and is sampled in Q(Vchal) is at most O(qε).

Definition 4.20 (Event MAL). Suppose we give the following artificial order to the queries specified
in the output of our experiments:

27

1. Queries specified in V ′ that are asked during the generation of PK and DK∗.

2. Queries in L.

3. Queries asked during the final encryption.

4. Queries asked during the final decryption.

5. Queries specified in V ′ that are asked during the generation of {DKi}i∈[k].

We say that the event MAL holds, if there is any triangle x1, x2, x3 in the output of the experiment
such that x1 is the root, but the first appearance of x1 according to the order above is after one of
x2, x3. In other words, (x1, x2, x3) forms a malformed triangle (see Lemma 4.9), but the order in
which the queries are considered is the order above.

Lemma 4.21. It holds that Pr[MALhyb] = O(t2/s).

Proof. In the experiment Ideal, if we ignore the learning step, one can postpone the key-generations
of {DKi}i∈[k] to be done at the end of the experiment (i.e., after the final encryption and decryption

are performed). This way, by using Lemma 4.9 we can conclude that Pr[MALidl] ≤ O(t2/2λ) =
O(t2/s). Unfortunately, in Hybrid we can not simply postpone the generations of {DKi}i∈[k] to
the end, but by Lemma 4.15 we know that the statistical distance between the outputs of Ideal
and Hybrid is O(t2/s). Therefore, we can still conclude that

Pr[MALhyb] ≤ Pr[MALidl] +O(t2/s) ≤ O(t2/s) +O(t2/s) = O(t2/s).

Definition 4.22. We say the event INT1 (read as “intersection”) holds if for some query [g(sk) =
pk] /∈ L: (1) g(sk) = pk is asked during the generation of PK or DKf∗ , (2) g(sk) = pk is asked
during the final decryption of Step 6, and (3) for some (α, dk) ∈ {0, 1}2λ the query id(pk, dk) = α
is asked during the challenge encryption of Step 6. By INT1

X we denote to the event INT1 in the
experiment X.

Definition 4.23. Similar to Definition 4.22, we say that the event INT2 holds if for some query
[id(pk, dk) = α] /∈ L: (1) id(pk, dk) = α is asked during the generation of PK or DKf∗ , (2)
id(pk, dk) = α is asked during the final decryption of Step 6, and (3) for some (m, c) ∈ {0, 1}2λ
the query e(pk, α,m) = c is asked during the challenge encryption of Step 6. By INT2

X we denote
to the event INT2 in the experiment X.

Lemma 4.24. For i = 1, 2, it holds that Pr[INTihyb] ≤ O(ε+ t2/s).

Proof. We will show that Pr[INT2
hyb] ≤ O(ε + t2/s), and the proof for Pr[INT1

hyb] ≤ O(ε + t2/s) is

identical and we describe it at the end. By Lemma 4.15 it is sufficient to show that Pr[INT2
idl] ≤ O(ε).

As a mental experiment, we assume that the decryption-keys are generated for every predicate f ,
a random bit is encrypted under every attribute a, and for every f(a) = 1, the message encrypted
under a is decrypted using the decryption-key generated for f . We refer to the latter experiment
as the extended version of the experiment Ideal and the experiment Ideal can be thought of as:
(1) executing the extended Ideal, and then (2) we only “look” at the encryptions and decryptions
that are performed over the pairs (a∗, f∗), (a1, f1), . . . (ak, fk). We define the following sets in the
extended Ideal:

28

• S(a): The set of pairs of (pk, α) such that some query of the form e(pk, α,m) = c is asked
during the encryption of the random bit under a.

• S(f): The set of pairs of (pk, α) such that some query of the form id(pk, dk) = α is asked
either during the generation of the master public-key or the generation of the decryption-key
for f .

• S(a, f): The set of pairs of (pk, α) such that some query of the form id(pk, dk) = α is asked
during the decryption of the random bit encrypted under a using the decryption-key generated
for f .

By the properties of the sampling algorithm Samp of Lemma 3.5 with probability 1 − ε over the
choice of (a∗, f∗), (a1, f1), . . . , (ak, fk) it holds that

S(a∗) ∩ S(f∗) ∩ S(a∗, f∗) ⊆
⋃
i∈[k]

S(ai, fi).

But, it is easy to see that in order for INT2
idl to hold there should be some (pk, α) that belongs to all

of S(a∗), S(f∗), S(a∗, f∗), and the query id(pk, dk) = α is not learned during any of the decryptions
of Step 3 (because otherwise id(pk, dk) = α would have been in L). But the above relation over
the sets sampled by Samp implies the opposite. Therefore INT2

idl can hold only with probability ε.
To prove that Pr[INT1

hyb] ≤ O(ε+ t2/s) we only use different definitions for the sets:

• S(a): The set of pk such that some query of the form id(pk, dk) = α is asked during the
encryption of the random bit under a.

• S(f): The set of pk such that some query of the form g(sk) = pk is asked either during the
generation of the public-key or the generation of the decryption-key for f .

• S(a, f): The set of pk such that some query of the form g(sk) = pk is asked during the
decryption under f of the random bit encrypted under a.

The rest of the proof remains the same.

4.3.3 Comparing Experiments Attack and Hybrid

Finally, in this section we will compare the behavior of Attack and Hybrid in their final step. We
will first go over the execution of the encryption of the challenge bit (and how its oracle queries are
answered), and then will cover the decryption of it using oracle O′ (which is defined differently in
Attack and Hybrid). All we have to show is that in every oracle query, the experiments proceed
O(t/s)-close unless one of the bad events defined in Appendix 4.3.2 happens. Then we can use
Lemma 2.2 to conclude that the statistical distance between Attack and Hybrid is at most

Pr[HITatt] + Pr[HIThyb] + Pr[MALhyb] + Pr[INT1
hyb] + Pr[INT2

hyb] +
∑
i∈[t]

O(t/s) = O(t2/s) +O(q · ε)

which finishes the proof of Lemma 4.16. (The summation is done for t instead of q queries, which
is the bound on the number of queries asked by τ -TPE algorithms, because to be able to use lazy
evaluation it is important to know the number of queries asked so far, and t is the upper bound on
the number of queries made by our adversary.)

29

1. Encrypting the Challenge Bit. Suppose a query x is asked during the encryption of
Step 6, and Attack and Hybrid have proceeded identically so far. Here, by O we refer
to the partial oracle (in both experiments) which includes only the answers to the queries
that are asked so far from the oracle O (this also includes Q(V) where V is the real view
of the key-generations which is not known to Adv). Since O (resp., O′) is used in the final
encryption of Attack (resp., Hybrid), the answer to the query x in Attack (resp., Hybrid)
depends on whether x is a free query with respect to O (resp., O′), or not. Below we discuss
the different possible cases.

(a) If x is a free query for both of O and O′: In this case, by Lemma 4.7 the answer to x in
both experiments is O(t/s)-close to uniform over {0, 1}λ, and so they are O(t/s)-close.

(b) If x is a free query for O′ (i.e., x 6∈ O′, so x 6∈ L), but it is not a free query for O (i.e.,
x ∈ O): Suppose x1 and x2 are the two queries in O that make x dependent, where x2

is the dual query of x and x1 is the root of the triangle.

i. If both of x1, x2 are in Q(V) \ L, then x ∈ Q(V) \ L will be a secret query of V .
Therefore, by asking x the bad event HIThyb happens.

ii. If none of x1, x2 is in Q(V) \L, then they are both in O′, which implies that x ∈ O′
(but we assumed the other way).

iii. If x1 ∈ Q(V) \ L and x2 ∈ O′, then since x1 is the root, due to the normal form
condition of τ -TPE, right before asking either of x or x2, the query x1 is also asked
to O′. This implies the event HIThyb happened.

iv. If x2 ∈ Q(V) \ L and x1 ∈ O′ then

A. If x2 is a query asked to k (resp., d), then the root x1 is a query to g (resp.,
id), and by the normal form condition, x1 is also present in V right before x2.
Therefore, x1, x2 are both in Q(V), and thus x ∈ Q(V). This time again the
query x implies the event HIThyb.

B. If x2 is a query asked to id (resp., e), then the root x1 is a query to g (resp.,
id), and by the normal form condition, x2 is asked also right after x which is of
the form k (resp., d). The latter implies the event HIThyb.

(c) If x is a free query for O (i.e., x 6∈ O, so x 6∈ L), but it is not a free query for O′ (i.e.,
x ∈ O): This case is symmetric to the previous case above and involves the bad event
HITatt.

(In the remaining case in which x is not a free query for both of O and O′ (i.e., x ∈
O, x ∈ O′), the answer to x comes from identical distributions in both experiments.)

2. Decrypting the Challenge Bit. Now suppose a query x is asked during the decryption of
Step 6, and Attack and Hybrid have proceeded identically so far (including the encryption
of the challenge). A key point is that during the decryption, the oracle O′ might have different
definitions in Attack and Hybrid (even if they proceed identically) because O′ in Attack
does not have access to the view of the final encryption. Therefore, we use O′att and O′hyb to
distinguish them. We also define the partial oracle O′′ defined in both experiments as follows.
At any time, O′′ consists of Q(V)∪L as well as the queries in the view of the final encryption
and the decryption so far. Note that, in our parallel comparison, we also assume that the
oracle O′′ is identical across Attack and Hybrid so far. Below we discuss the different
possible cases.

30

(a) If x ∈ O′att, since O′att ⊆ O′hyb, therefore it holds that x ∈ O′hyb as well and the same
answer is used in both experiments.

(b) If x 6∈ O′att:
i. If x ∈ O′hyb: due to the details of this case, we continue this case below.

ii. If x 6∈ O′hyb:

A. If x 6∈ O′′: In Hybrid, x is a free query because of x 6∈ O′hyb. In Attack, all

the queries asked to O so far are included in O′′ and so x 6∈ O′′ implies that x is
a free query in Attack as well. Therefore x is a free query in both experiments
and its answer is chosen from (t/s)-close distributions.

B. If x ∈ O′′: The case study of this case is identical to Case 1b above.

Continuing Case 2(b)i:

Let x1 and x2 be the other two queries that make a triangle with x in O′, and let x1 be the
root of the triangle and x2 the dual query of x. Since this triangle does not exist in O′att, at
least one of x1 and x2 should be asked during the final encryption.

• If x1 is asked during the final encryption:

– If x2 ∈ Q(V ′) \ L: In this case event MALhyb has happened.

– If x2 6∈ Q(V ′) \L: then in Attack both of x1, x2 are asked to O. Since in Attack,
x is also forwarded to O, it follows that the same answer determined by the answers
of x1, x2 is used for x in both experiments Attack and Hybrid.

• If x2 is asked during the final encryption:

– If x1 6∈ Q(V ′) \ L: In this case again in Attack all of x1, x2 and x are asked to O
and so the same answer determined by the answers of x1, x2 is used for x in both
experiments Attack and Hybrid.

– If x1 ∈ Q(V ′) \ L: Let V ′∗ be the union of the views of the challenger during the
generation of PK and DK∗ as specified in V ′, and let V ′j for j ∈ [k] be the challenger’s
view when generating DKj as specified in V ′.

∗ If x1 6∈ Q(V ′∗): Then x1 should belong to Q(V ′j) for some j ∈ [k], and so the
event MALhyb has happened.

∗ If x1 ∈ Q(V ′∗): Then x2 can not be a k or d query, because these queries would
make x1 to be asked during the final encryption and that implies the event HITatt

has happened.

· If x1 is of the form g(sk) = pk, then x2 should be of the form id(pk, dk) = α,
and x of the form k(sk, α) = dk. By the normal form condition x1 is asked right
before x, at which point (since x1 ∈ Q(V ′∗)) the event INT1

hyb has happened.

· If x1 is of the form id(pk, dk) = α, then x2 should be of the form e(pk, α,m) =
c, and x of the form d(pk, dk, c) = m. By the normal form condition x1 is
asked right before x, at which point (since x1 ∈ Q(V ′∗)) the event INT2

hyb has
happened.

Acknowledgement. We thank Brent Waters for suggesting to us the problem of separating
predicate encryption from IBE and for useful collaborations in the initial stages of this project.

31

References

[1] Nuttapong Attrapadung and Benôıt Libert. Functional Encryption for Inner Product: Achiev-
ing Constant-Size Ciphertexts with Adaptive Security or Support for Negation. In Public Key
Cryptography, pages 384–402, 2010. 1

[2] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In FOCS, pages 337–347, 1986. 13

[3] Boaz Barak and Mohammad Mahmoody. Lower bounds on signatures from symmetric prim-
itives. In FOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 2007. 4,
24

[4] Boaz Barak and Mohammad Mahmoody. Merkle puzzles are optimal - an O(n2)-query attack
on any key exchange from a random oracle. In Shai Halevi, editor, CRYPTO, volume 5677 of
Lecture Notes in Computer Science, pages 374–390. Springer, 2009. 4

[5] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. Lecture Notes.
http://cseweb.ucsd.edu/users/mihir/cse207. 8

[6] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993. 17

[7] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with
efficient revocation. In ACM Conference on Computer and Communications Security, pages
417–426, 2008. 1

[8] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223–238, 2004. 2

[9] Dan Boneh and Xavier Boyen. Secure Identity Based Encryption Without Random Oracles.
In CRYPTO, pages 443–459, 2004. 2

[10] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. SIAM
J. Comput., 32(3):586–615, 2003. 1, 2

[11] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent Wa-
ters. On the Impossibility of Basing Identity Based Encryption on Trapdoor Permutations. In
FOCS, pages 283–292, 2008. 2, 3, 4, 7, 16, 22, 26

[12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In TCC, pages 253–273, 2011. 1, 6

[13] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on Encrypted Data.
In TCC, pages 535–554, 2007. 1

[14] Clifford Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues. In IMA
Int. Conf., pages 360–363, 2001. 1, 2

32

http://cseweb.ucsd.edu/users/mihir/cse207

[15] Eiichiro Fujisaki and Tatsuaki Okamoto. How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost. In Public Key Cryptography, pages 53–68, 1999. 17

[16] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In CRYPTO, pages 537–554, 1999. 17

[17] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT,
pages 445–464, 2006. 2

[18] Vipul Goyal. Reducing Trust in the PKG in Identity Based Cryptosystems. In CRYPTO,
pages 430–447, 2007. 1

[19] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer and Commu-
nications Security, pages 89–98, 2006. 1

[20] Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences of One-Way
Permutations. In STOC, pages 44–61, 1989. 1, 17

[21] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In EUROCRYPT, pages 146–162, 2008. 1

[22] Jonathan Katz and Arkady Yerukhimovich. On Black-Box Constructions of Predicate Encryp-
tion from Trapdoor Permutations. In ASIACRYPT, pages 197–213, 2009. 9

[23] Hartmut Klauck. Rectangle Size Bounds and Threshold Covers in Communication Complexity.
In IEEE Conference on Computational Complexity, pages 118–134, 2003. 14

[24] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997. 13

[25] Troy Lee and Adi Shraibman. Lower Bounds in Communication Complexity. Foundations and
Trends in Theoretical Computer Science, 3(4):263–398, 2009. 13

[26] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner
Product Encryption. In EUROCRYPT, pages 62–91, 2010. 1

[27] Satyanarayana V. Lokam. Spectral Methods for Matrix Rigidity with Applications to Size-
Depth Trade-offs and Communication Complexity. J. Comput. Syst. Sci., 63(3):449–473, 2001.
15

[28] Satyanarayana V. Lokam. Complexity Lower Bounds using Linear Algebra. Foundations and
Trends in Theoretical Computer Science, 4(1-2):1–155, 2009. 13

[29] Mohammad Mahmoody-Ghidary and Avi Wigderson. Black Boxes, Incorporated., 2009. http:
//www.cs.cornell.edu/~mohammad/files/papers/BlackBoxes.pdf. 1

[30] Tatsuaki Okamoto and Katsuyuki Takashima. Fully Secure Functional Encryption with Gen-
eral Relations from the Decisional Linear Assumption. In CRYPTO, pages 191–208, 2010.
1

33

http://www.cs.cornell.edu/~mohammad/files/papers/BlackBoxes.pdf
http://www.cs.cornell.edu/~mohammad/files/papers/BlackBoxes.pdf

[31] Adam ONeill. Denitional issues in functional encryption, 2010. http://www.cs.cornell.edu/ mo-
hammad/files/papers/BlackBoxes.pdf. 1

[32] Alexander Razborov. On Rigid Matrices (in Russian), 1989. http://people.cs.uchicago.

edu/~razborov/rigid.pdf. 15

[33] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In Theory of Cryptography, First Theory of Cryptography Conference,
TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 1–20. Springer, 2004. 1

[34] Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In EUROCRYPT, pages
457–473, 2005. 1, 2, 7

[35] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO, pages 47–53,
1984. 1, 7

[36] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005. 2

34

http://people.cs.uchicago.edu/~razborov/rigid.pdf
http://people.cs.uchicago.edu/~razborov/rigid.pdf

	Introduction
	Our Results
	Techniques

	Preliminaries
	Basic Probabilistic Facts
	Predicate Encryption and Its Variants

	Sharing-based Constructions and Impossibility Results
	The OR-Based Approach
	The Sharing-Based Approach
	A Combinatorial Argument Refuting OR-Based Constructions
	The Communication Complexity Approach

	Separating TPE from IBE
	The Oracle
	Our Attack
	Analysis of Our Attack
	Three Experiments and Their Outputs
	Defining and Bounding the Bad Events
	Comparing Experiments Attack and Hybrid

